
1tad1e lhaeK

TRS-80 Model 11
Manual

CUSTOM MANUFACTURED IN THE U.S.A. BY RADIO SHACK M A DIVISION OF TANDY CORPORATION

..

•

-

TRS-80 Model II

Operation Manual

llad1e /haeN
I A DIVISION OF TANDY CORPORATION

One Tandy Center
Fort Worth. Texas 76102

First Edition - 1979

t\11 rifhts reserved. Reproduc tion nr use, witho u t e.,.press
permission, of editorial or p ictorial content. in any man­
ner, is prohibited. No palc n t liahility is assumctl with
respect to the use of the information contained herein.
While every precaution has been taken in the preparation
of this book, the publisher assumes no rcspo nsihility for
errors or omissions. Neither is any liability assumed for
damages resultilll! from the use of the information con­
tained herein .

© Copyright I Y 79. Radio Siwek
A n;,,i.~io11 oj"Taudy Corporation
Furl Worth, Texa.~ 76102, {J.S.A.

-

- Contents

1. Brief description of basic system 1/1

2. Installation .. 2; 1

3. Operation .. 3/ 1
Turning the Computer on
Using the RESET switch
Inserting a Diskette
Removing a Diskette
Loading the Operating System
Keyboard Operation
Video Display Adjustment

4. Power-Up Diagnostic Messages 4/1

5. Care and Maintenance 5/1
Care of Diskettes

- Tips on Labeling Diskettes

6. Add-Ons ... 6/1
Additional RAM
Additional drives
Peripherals
Other boards

7. Specifications 711
Display Character Set
Power Supply
Floppy Disk Drive
Serial Interface Signals and Levels
Parallel Interface Signals and Levels

ltad10 lhaek
A Division of Tandy Corporation ONE TANDY CENTER, FORT WORTH, TEXAS 76102

August 10, 1979

Dear Model II User:

Our TRS-80 Model II Microcomputer is an exciting and
__ __p.owe_rfuLsmall comp.ute..i:.-.We wan-t-t0-make-.s-Ur-e tha-t-­

these manuals supply you with the tools you need to
realize the great potential of this new sy_stem.

Before releasing the final, complete version of the
manuals, we would appreciate hearing from you about
your opinions of these manuals ••• errors, suggestions
and even some praise (if you think we deserve it).

Please fill out the attached questionnaire, fold it,
and drop it in the mail (no postage necessary). He
welcome your help in making our manuals the very best
possible.

Thank you.

Si n ce rP. 1 y ,

iL_~~
Dave Gunzel
Manager
Jechnica l Publications

P.S. When the final, printed manuals are ready, we'll
send you a copy ••• better because~ have
helped share in its preparation.

One other thing -- please limit your comments
and questions to the manuals. Questions or
problems about the computer system should be
directed to Customer Service. Call their toll
free number, (800) 433-1579.

THE WORLDWIDE SUPERMARKET OF SOUND

QUESTIONNAIRE
MODEL II TRS-80

Please rate the manuals in the following areas:

A. Are they UNDERSTANDABLE?
D Easy to understand
D Too elementary for my needs
D Understandable without much difficulty
• Difficult

" Comments:-------------------------------

8. Are they well ORGANIZED?
D Well organized - good reference aids

Not or anized well - difficult to find information needed

C. Are they COMPLETE?
D Complete enough for my use
D Not enough information
D Comments: ___________________________ _

Where would you like us to add more details or illustrations: _____________ _

Other Comments: ----------------------------

- --_ (space for more comments on baQ}s}

Please answer these questions regarding your computer and business background:

A. Areyoua:
D Systems engineer, programmer,

data processing manager, etc.
D Accountant
D Management consultant
D Business executive, manager,

administrator
D Computer operator
D Other _ ____ _

B. How are you using the Model II computer?
D For my company's business applications
D For my client's business applications
D For my own personal use
D To develop programs which will be

marketed to: • a. businesses
0 b. the public

C. Is your computer background .. . • Heavy
D Moderate
0 Light
D No programming knowledge

before reading this manual

Comments: _________ _

FOLD

staple or tape

Please fill out questionnaire
on back

~- --------- -- ---

FOLD

111111

BUSINESS REPLY MAil
POSTAGE WILL BE PAID BY ADDRESSEE:

D. Gunzel
TRS-80 Model II Manuals
Technical Publications, Dept. 0025
RADIOSHACK
1100 One Tandy Center
Fort Worth, Texas 76102

FIRST
CLASS
PERMIT

#138

no postage
necessa,y

, _____ _
, ----------------- - - ---- -- · - - - - - - -· --- t. - · - ·--- - ·"·r· - -• - -- ---------------------- ----·~-- .. - -· .

..

Additional Comments:

Please put me on your mailing list to receive all information about Radio Shack's
TRS-80 Microcomputer System - the Microcomputer Newsletter, advance product
information, applications hints & tips, user's suggestions, etc.

PRODUCT PURCHASED

32K • DISK EXPANSION UNIT•
64KO

I have read the Warranty on Hardware and Software•
Name _________________ _________ _

Address _______________ _______ __ _

City _______________ state, _____ Zip ___ _

Occupation ________________________ _

Intended usage _____________________ _

ATTN DEPT. 0055

RADIO SHACK
4925 PYLON RD.

FT. WORTH, TX76106

IMPORTANT NOTICE

PLACE
POSTAGE

HERE

If you are not using a Disk Expansion Unit, the disk expansion terminator
must be inserted into the disk expansion connector. The terminator is
in the packet with the power cord.

It is very important to carefully center the terminator so that it covers
all ~ins before inserting it. If the terminator is not inserted correctly,
the isk will not function properly.

All PINS
MUST BE
COVERED

:\

st:·: . .-.-·.-.... .\?
C:t.:: . . :.·.·.·.)?

~
~~

*

CORRECTIONS TO MODEL II OWNERS MANUAL

8/23/79

IMPORTANT CORRECTIONS TO MODEL II OWNER'S MANUAL
PRELIMINARY VERSION

I. OPERATION MANUAL

PAGE 1

Pa9e 3/1: ALL DRIVES must be empty whenever vou tur·n the Corr1Puter· on
or- 1::i1::1:: ..

Pa9e 6/2: To use the Model II WITHou·r a Disk ExPansion Unit connected,
vou must connect the Terminator Plug to the the connector labeled DISK
EXPANSION on the back of the DisPlaY Cc1r1sole~

I I. nmoos l,EFEHENCE MANUAL
Pa9e 6: Delete the r•efePence to the Keyboard Code Map--such a maP is
not included in the preliminary manual ..

Pa9e 44: Note that the DEBUG UPload function is not compatible with
f:3ETCOM, HB232C or· 'i::h,.-::! 1::ither· :=.er-ial I/0 '.:.ui::i-~~r-vi'.:-or· call:":- ..

Pa9e 66A: SETCOM command .. Befor·e changing anv of the Parameters for a
1:h;3_nnel, the channel mu~-t be of·f ..

The loL1H7.''.=-t avai 1a.b'le baud r·a.te i~. lj_(Zt, not 112'.1121 .. HouJt'VE:r·, +.:o 912t 1:1.(t)
baud, You must still specify 100 in the Parameter list. Also make a
note of this on Pa9e 143.

Pa9e 72: Tt1e FORMAT command sYntax requir-e braces, not Parentheses,
around the option listu Chan9e all examples on Pa9es ·72 and 73 to
include braces instead of Parenthesesu For example:

FOl~i"IAT : 1 {ID•=ACCOUNTE, PW=0 1r,ous.,.a)-

Pa.9e 14Li-: In the t..L1ir·ing dia9r·am, Mode"! II t1:i Model II, ··(OU mus-+.:
connect Pins 20 and 6 on each DB-25 male connector. We also recommend
that You add a connection from Pin 1 to Pin 1 on the DB-25 male
connectors~ This establishes a common CHASSIS GROUNDn

In additior1, if YOU are onlv 9oin9 to use one of the serial chanr,e-l·s,
Pins 3, 5, 6, 7, and 8 on the other channel must be tied to9ether
BEFORE vou initialize the channels with SETCOM or RS232C~ PrePar·e a
DB-25 male terminator Plug for the unused channel:

,,,,,,
• ' I I

1'7t..3
1

:J
11

,,, .. ,,,
REAR VIEW OF DB-25 MALE CONNECTOR

III. BASIC REFERENCE MANUAL.
Pa9e 132: To the list of field sPecifier·s, add:
AAAA Causes a numbe~ to be- Printed in leading zero E or

D for·m,a.t.
For· e:=<amP l r.::1:

PRINT USING "#.#####AAA&•; 12.34501
Pr·ints

0. 123'•5E+02

Pa9e 208: Change the svntax for INPUT$ to:
1NPUT$(len9th, buffer-number)

Chan9e the examPle to:
AS= INPUTSl12, 2) _ .

rt r9e samPle Pro9~am lir1e 2~10 to:
~ ,a. '.::,,,-, 1 ,. ··1·$ = II\IPUT$(70, 1)

...... it.. I{,}

CCHlHEGTIOJ\IS TO MODEL I I O,,JNEFlS M/,NUAL PAGE 2

The TERM Pro9r·am included with TRSDOS Version 1~1

This Pro9rarn allows vou to use serial Channel A for sending and
receiving characters in a terminal mode~ That is, it will function ~s
a sendin9/receivin9 device for ASCII ct1aracters~ The Pro9ram
alternately che(:ks for a character received from the Channel A and
checks for acharacter tvPed in ort tt,e Kevboa~d~ Characters received
are automaticallv sent to the Video DisPlav~

Character available from J • i' Display it/
serial input?

J, N ?

YES

0

)
YES

Character available from :, { Send it via \
lrnvboard? serial channel

1'
,, 0 .,

Note that characters vou tvPe ar·e not automatically coPied to the
Video DisPlaY. If modems at both ends of the transmission are s~t to
half-·duPlex, characters vou tvPe will be echoed back f~om the
re~eivin9 d~vice and sent to the Video DisPlaY"

Before usin9 TERM, YOlJ must initi~liz@ Charinel A with SETCOM or
RS232C. Select the Parameters that suit the modem or equiPment vou are
usin9n Be sL1r·e to Fut a terminator· on Chanr1el B if it is beir19 used
(see cor,rection for· ,~a9e 144 of the TRSDOS Refarence Manual)

After, YOU have initialized Channel A, type:
TERM

as a TRSDOS command linen The Computer will 9o into the ter·minal
mod,;:.,

Er·r·or· Handl in9

If the data carrrier is not P~esent when TERM tries to send or r·eceive
a character, it will disPlaY the message:

DATA CARRIER IS NOT PRESENT
and stoP. P~ess <BREAK> to return to ·rRSDOS~

TERM d,:i0:.':-n·1 t check for a,rt'y' other· r·-1.::,,ceive err-ror;:r. (f.!~9- ~ fr·amin9'i 10:::-t
d;::1.t;:il.) ft

If TEFlM deba,:ts ,~ tr·ar,s,mlt c,r-r·or· Ce..s., CTEl r,ot a.vai"Jablsc), it will
display the message:

XMIT EHROR
and then look for· ar1ott1er Kevboard character~ If the transmitter is
busy wh~n TERM tries to send a character, TERM will re-·send the
chara.i:::te-r·~

•

PAGE 3

SOURCE LISTING OF 'TERM'

1'di 'TERM-"INAL PROGRAM

I

' RECV

I

' I
J<;BlN

I
I
XM!'t

XMITE

OCOERR

dALT

XMIT.'tliS
DCDE.'tliS

ORG .1801dH

..{TERM., PROGRAM

EDU S
LD A,Q6
AST 8
JR C,DCOERA
JR l'•.IZ,K8IN

RECEIVES CHARACTERS INTO CHA"'f,,IEL A AND TRANSMITS
DATA KEYED IN .FROM TrE KE':"BOARO ONTO CHAN'•IEL A

ISUPERVtSOR F'-"ICTION - RECEIVE CHARACTER, CHA!\Na A
fIF CMA.qACTER AVA!LARLE, TT WILL BE RETTURNEO IN REG
lOATA CARRIER LOST ERROR
Jl',O CHAR YET

WE': HAVE A CHARACTER NOW F'r.t:IM THE CHAr,,JIEL A RECEIVER

LD
RST

A,8
8

JSlJP€:RVISOR r:::'UNCTION - WTDE• CHARACTER OUTPUT
JOUTPUT THE CHARAc:fER IN REGISTER 'B4'

NOW fEST !F THERE IS A CHARACTER FROM THE KEYBOAR:'H OUTPUT IT
ONTO THE CHANNEL A TRANSMITTEq IF SO

' A,4
f~W LOOK TO SEE IF KB INPUT WAlHNG
fSUPERVIS• R FU',!CTION - KEYBOARD CHARACTER lNPUT
llF CMA~ACTER AVAIL, IT WILL COME BACK IN REG ~w

'B'

EQU

LD
RST
JR

8
N7,RE:CV JNO CHARACTEi~ AVAILABLE YET t SEE !F ONE HAS BEEN RECEl VE[)

WE HAI/= A- CHARACTER FROM THE KEYBOARD. NOW TRANSMIT THIS .CHARACTER

LD
RST
JR
JR
BIT
JR

EOLi
LD
LD
!NC
LD
LD
RST
JR

E'.OV
LD
LO
INC
LD
LD
RST

EQU
JR

Qf;F T

DEFT

A 997

8
C,DCDERR
Z ,RECV
2,A
NZ,XMI.T

$
UL, XMITMS
6, (HL}
HL
c.0DH
A,9
B
RECV

' HL.DCOEMS
B, (H...)

HL
C 1 0DH
A,9
8

' HALT

J XM!T ERREIR'

f SUPERVISOR FI.JN"CTfON - TRANSMtT ONTO CHAr-..NEL A.

JOO IT
f0ATA CAQ~IER HAS BEEN LOST - E~OR!
fCHARACTER WAS TRANSMITTED PR~PERLY
ITRANSMITTER STILL 9USY ERROR BIT
JRETRY UNTfL TRANSMITTEn IS NOT BUSY

JERACIA MESSAGE W/ LENGTH 8YTE IN FRONT
; GE.T LENGTH F~ ~ FRONT OF MESSAGE
IGET 1-L •> TEXT OF MESSAGE ITSELF
1r0LLOW TEXT W/ A CARRIAGE RETURN
,suPERV!SOR FUNCTION - VIDEO LINE ROUTINE
lOtJTPUT MESSAGE TO VIDEO
;oo BACK ro SEE I~ RECEIVED CHARACTER AVA{LA6LE.

IERROR - DATA CARRIER WAS LOST MESSAGE
IERFOR MESSAGE w/ LENGTH BYTE IN rRONT
JGET LENGTH OF .'AESSAGE INTO REGISTER 'a-'
JGEi HL => TEXT OF MESSAGE ITSELF
JWE. WANT A CA~!AGE AETUR:N TO FOLLOW MESSAGE
JSUPERVISOR FUNCTION - 1/ll)EO LINE· tro•.JT!NE
lDUTPUT TO VIDEO HERE

;TH!S WILL CAUSE A ~H~LT~ OF THE ~OGPAM
ILOOP BACK - THE 'BREAK"" KEY WILL RETURN CONTROL BACK TD T~SOOS

~DATA CAR~IER 15 NOT PRESENT~

NOTE: "TERM" is intended as a demonstration program only-­
to help you in writing programs which use the serial i/o
capabilities of TRSDOS Model II.

CORRECTIONS TO MODEL II OWNER'fl MANUAL PAGE 4

BASCOM/l~:,AS ;and COMElUB

l'he BASIC comn1unications P~og~am BASCOM/BAS and the
comm,Jnications subroutine COMSUB together perform. the same
function as the TERM Fro9r·am which is inclucled with TRSDOS~
BASCOM/BAS and COMSUB are included -to give vou a feel for
irit~r-facin9 Pro9~ams at the assemb1v--1an9ua9e level with BASIC
Pr·{:.tJr·•,1m2.lt ~?,ASCOl"'l/1:2',AS i::a11 ~- th,a ma.chine-1.::an9u.a.9f.' COMStJB viia
the USR function,. Like TERM~ BASCOi"1/BAB <:1nd COMSUB ;1.re
included on Your system disk and mav be examined b·~ emPloYin9
the TRSDOS command LIST (or the BASIC command LIST in the case
c,f Bl~SCO!"'l/1?.AB) ~

The Fro9rams allow vou to use the kevboard of the Mod~l II to
send data in the form of ASCII char~cters to another comP~Jter
or device; at the same time, characte~s transmitted on the
other device will be received bY the ~loc!el II and Printed on
th":: DisP·!a.Y~

Serial Channel A is used for sendin9 and Peceivin9. (Channel B
must be terminated, see cor~ection for Pa9~ 144 of the TRSDOS
Reference Manual~) The Pro9rams alter·natelY check Chanr,el A
for a character received, and· the keyboard for· a character·
tYFed.. Chi3.r·a.cter·~- t·•f'r:-ed 1.ui 1 ·1 be auti:1m,'!::li::i.c,a.·I1Y ,~choed to thB
Video DisPlaY, thou9h this can be defeated bv makin9 a
two-bYte modification to COMSUB; the NOPs at EF9F and EFA0
:::-h1:i1..1"ld bt> modifi0:d to ;a LD (Hlu_),!'e0.,

Before usin9 the two Pro9rams, make su~e that the RS-232 cable
is connected to Channel A and that Channel Bis fitted with a
terminator devicek Then, under l'RSDOS, type DO DOCOM. DOCOM
is the name of a DO file which (a) exe~:LJtes the SETCOM command
{P~i.r·ameter·s. a.r·-2 s.,;.~t to default valu-e-s); (b) 'l,:iad::. COMSUB1 (c:)

loads BASIC 1uith the extension -M=61000, which reserves enou9h
memorv for· COMSUBk Wher1 the BASIC PromFt aPPears on the
screen, tYPe RUN NBASCOM/BAS"~ The Pro9ram will be9in~

When a tr·ansmit or· r·ec~iv8 0rr·0r is encountered, the word
11 ERROR" will be P~inted, fo1·1owed bv an 8-bit error code. If
bits. 0, i~ a.rid 2 arf:~ all off, i:he -2rr·or· u.ti 11 b,;.=; a r·et:eivii:1
error and ARVC·-·-Channel A Receive, Pa9e 145 in the TRSD08
manual, should be consulted to Pin the error down exactlv~ If
bits 4, 5, 6, and 7 are all off, the error is a t~ansmit
er~o~~ Consult ATX--Channel A Tr·ansrnit, Pa9e 146 in the TRSDOS
m.:a.nLJ•3, l u.

•

..

•

j

XMI.TER

XM!Tl

ERROR

BIT EST

BITSTI

BITST2
BITST3

CORRECTIONS TO MODEL II OWNER'S MANUAL PAGE, 5

Th-er·e ar·e
The sour·ce

i:ttio ver·sions of
1 i~-tinSJ b1c .. 1 ow

COMSUB, one for 64K and one
is t~1e COMSUB 64K versionu

for-

ORG
INC
LD
LD
INC
LD
LD
LD
CP
JR
LD
RST
JR
RET
OR
JR
LD
RET

LO
LD
LO
RST
JR
NOP
NOP
RET
BIT
JR
LD
DR
DEC
JR
LO
LO
LO
BIT
LO
JR
INC
RLCA
INC
D.JNZ
LD
LD
LO
LD
RST
RET

OEFM
DEFS

SUBROUTINE FOR BASIC COMMUNICATIONS PROGRAM

THIS ROUTINE MUST BE EXECUTED AT 3~~ BAUD OR HIGHER

0EF80H
DE
A,(DE)
L,A
DE
A, (OE)
H,A
At (HL)
0
NZ.XMITER
A•Q6
8
C,ERROR
NZ
A
NZ,ERROR
(HL),B

B,A
DE, 0FFF.FH
A,97
8
C .ERROR

z
0,A
NZ,ERROR
A,D
E
OE
NZ, XMIT1
(HL) 1 00
B,e
HL,BITST3
7,A
(HL),'IO"'
Z.,BITST1
(HL l

HL
BITES.T
HL,Bl.TST2
B, I 4
c,'.u..,
A,Q
8

-'ERROR·'._,
8

,• N ENTRY DE POINTS TD A 3 BYTE STRING DESCRIPTOR
IDE NOW POINTS TO LSB OF STqlNG ADDDRESS
ILSB OF STRING ADDRESS TO ACCUMLLATOR
ILSB nF STRl~G ADnRESS TO REGISTER L
IDE Nnw POINTS TO MSB OF STRING ADDRESS
I MSB OF STRlr>.SG AOOH!ESS TO ACCUMlLATOR
IMSB OF STRING ADDRESS TD REGISTER H
I 1 BYTE STRING TO ACCUMLLATOR
ISEE IF CHARACTER IS ZERO
IIF NOT ZERO TRANSMIT CHARACTEQ, ELSE FALL THRf:JUGH TO RECIEVE CHARACTER
ISVC CALLIPORT A RECIEVE

IOUIT ON ERROR LF MCRJEM CARQIER NOT PRESENT
JRETURN IF r,.o CHARACTER RECIEVED
ISET STATUS BITS
IQlJIT ON ERROR I.F ANY STATUS BITS ARE SET
IPASS RECIEVEO CHARACTER TQ STRING LOCATION

JCHARACTER TO BE TRANSMITTED TO REGIS.TER B
ILOOP COUNT IF TRANSMirER BUSY STATUS ENCOUNTERED
ISVC CALLIPORT A TRANSMIT
I
I QUIT ON ERROR I.F MODEM CARRIEQ NOT PRESENT
I INSERT -11 LD (HL),00-11 HERE WHEN USING MODEM IN HALF-DUPLEX MODE

' fRETUAN IF CHARACTER TRANSMITTED
fCHECK CLEAR TO SEND STATUS BIT
I QUIT ON ERROR IF STATUS BIT SET
tMSB OF LOOP COUNT TO ACCUMLLATOR
ILSB OF LOOP COUNT
IREOUCE LOOP COUNT
ILOOP IF COUNT IS NOT ZERO, ELSE FALL THROUGH TO AN ERROR
I DO NOT .DI SPLAY .CHARACTER IF ERROR ENCOUNTERED
IL •• P COUNT (8 BIT STATUS BYTE)
IS.TORAGE AREA
ICHECK BIT 7 CF ACCUMLLATOR FOR COMMUNICATIONS STATUS
I LOAD ASC- II ZERO
IJUMP IF SJATUS BIT NOT SET
IASC-II ZERO=> ASC-II ONE IF STATUS BIT SET
lROTATE ACCUMULATOR LEFT
I '-'iOVE TO "-EXT STORAGE P• S IT ION
ILO• P TO CHECK STATUS OF 8 BITS
IERADR MESSA.GE TO BE DISPLA.YEO
ILENGTH OF MESSAGE
JCHARACTER TO BE INSERTED AT THE END OF ERROR MESSAGE
ISVC CALLIVIDE• LINE
I

I ERROR MESSAGE
ISTOAAGE AREA FDR ERROR STATUS B.ITS TD BE DISPLAYED

1tad1e lhaeK

TRS-80 Model 11
Operation Manual

A Guide to Using the Computer.'.
Connection, Power-Up and Operation

CUSTOM MANUFACTURED IN THE U.S.A. BY RADIO SHACK g A DIVISION OF TANDY CORPORATION

An Overview of the Model II
Documentation Package
This binder contains the information you need to use the
Model II Computer System. It is intended as a practical
reference guide to the System. It is NOT a tutorial. Some
familiarity with Computers will be very helpful in reading this
material and using the Computer.

The binder comes with four manuals; other manuals can be
added as you expand your System.

Operation Manual

Explains the connection and operation of the System,
including power-up, handling diskettes, the keyboard,
maintenance, etc. If you are going to use Radio Shack
Applications Software, this Manual will give you all the
information you need to get going. It does NOT describe
Model II software (Operating System, BASIC, etc.).

Model II Operating System Reference
Manual

Describes the Operating System: command format, file
specification, operator commands, utilities, system routines
available to assembly programmers, memory allocation,
keyboard and video display features, etc.

Model II BASIC Reference Manual

Describes the BASIC programming language used in the
Model II. While the manual includes examples of state­
ments and short applications programs, it is not a teaching­
boo!<. Radio Shack sells several books which will help you
learn to program with BASIC.

-

-

-

1 / Brief Description of System

The Radio Shack TRS-80 Model 11 is a disk-based computer system
consisting of two major components:

• a Display Console with built-in disk drive
• a separate Keyboard Enclosure

The Operating System software is loaded from diskette by a built-in
"bootstrap" program.

Here is a brief description of the functional elements of the Computer.

Processor

At the heart of the Computer is a Z-80A microprocessor operating at its
maximum design speed (4 million machine-cycles per second).

The processor receives power-up and reset instructions from read-only
memory (ROM). After the TRSDOS initialization program is loaded from
disk, this ROM is electronically switched out of the system and replaced with
random access memory (RAM).

Random Access Memory (RAM)

The basic system includes32K bytesofrandom access memory. (IK = 1024.)
An additional32K bytes can be added, for a total of64K bytes of addressable
RAM.

Video Display

The Video Display has its own LSI controlJer chip, to free the Z-80A
processor from display refresh and related tasks.

The Display offers two modes: 80 characters by 24 lines, and 40 characters by
24 lines. The displayable character set includes the full ASCH set (upper and
lower case alphabet, numbers, and special symbols), plus 32 graphics
characters. Each character can be displayed as white on black or black on
white. See Displayable Characters in Section 7.

1/ 1

MODEL II OPERATION

Keyboard

The Model 11 Keyboard has its own LSI controller to free the Z-80A processor
from keyboard scan and related tasks. The Keyboard is in a separate case and
is connected to the Display Console via a built-in cable at the bottom front of
the Console.

The Model II has the standard typewriter keys (letters, numbers and
punctuation symbols); however, each of these keys can output several
different codes to the Computer, depending on which mode the Keyboard is
in: Unshift, Shift, Caps, or Control. ln addition, the Keyboard features a
Repeat key and two programmable ''function" keys. (See Keyboard
Operation.)

Floppy Disk Drive

The Model 11 includes a built-in 8" disk drive. Up to 3 more drives can be
added in an external Expansion Unit. (See Section 6, Add-Ons.) Because of a
special high-density recording technique, each diskette can contain 509,184
bytes of information , which is more than 5 times the capacity of a 5-1/4"
diskette. (It would take a 70 wpm typist 24 hours of typing at speed to fill an 8"
diskette.)

The "System Drive" (the one that's built-in) must always contain an
Operating System diskette. The amount of free space on this drive available
for user programs and data depends on the Operating System. (See the Disk
Operating System Manual fur actual diskette space allocation.)

The other optional drives can be devoted exclusively to the storage of user
programs and data.

Peripheral Interfaces

There are four interlace connections on the back of the Display Console:
• Two serial (RS-232-C) Input/Output (1/0) channels
• A parallel l/0 channel, e .g. , for connection to TRS-80 standard

parallel-interface line printers
• Floppy-disk 1/0 channel for connection of the Model II Disk Expansion

Unit

The Display Console also provides connectors and slots fur future expansion.
(Sec Section 6, Add-Ons.)

1/2

-

-

-

-

-

-

Display Console \ ___ Po_ w_e_•_S_w_•_tc_h_f_o_r ____ ...,..,,,,..,.,,...D..,r-iv_e_R_e_le_a_se_ ba_ r __ , ~ \ EnU,e System

Floppy Disk
Drive

Keyboa,d Case J
Figure/_- TRS-80 Model /l

Reset ­
Press up
to reset
computer

Drive Select
LED ­
Lights up
during disk
operation

Keyboard Connector
Cable
(not shown)

1/3

-

-

-

2 I Installation

Carefully unpack the System. Remove all packing material and save it in case
you ever need to transport the System. Be sure you locate all cables, papers,
diskettes, etc.

Place the Display Console on the surface where you'll be using the Computer.
The Computer should be near a 120 V AC outlet, so that extension cables
won't be necessary. (See Notes on AC Power Sources.)

Notice the cable at the bottom right of the Display Console. Plug this into the
jack on the right rear of the Keyboard Case. (See Figure 2.)

Once connected, the Keyboard Case can be pushed back into the recessed
area at the base of the Display Console, or moved to any convenient place
within 2 - 2 1/2 feet of the Console.

(For connection of additional peripheral equipment, see Section 6, Add­
Ons.)

Connect the female plug on the Power Cord to the back of the Display
Console. Connect the other end to a source of 120 V AC, 60 Hz. (See
Figure 3.)

Figure 3. Power Cord connected to Dis­
play Console

Figure 2. Display Console connected to
keyboard.

Note: The power cord has a three-prong safety plug tu provide a reliable
ground for the system. This ground is very important to the System. If at all
possible, plug it directly into a three-prong socket. Otherwise use a 3-to-2
prong adapter and ground the adapter.

2/1

t.,.. MODEL II OPERATION

Notes on AC Power Sources

Computers are sensitive to fluctuations in the power supply at the wall socket,
from very short-duration (millionths of a second) voltage spikes, to
prolonged drops in current or voltage. This is rarely a problem unless you are
operating in the vicinity of heavy electrical machinery. The power supply may
also he unstahle if some appliance or office machine in the vicinity has a
defective switch which a rcs when turned on or off.

Your TRS-80 Model II contains a specially designed, built-in AC line filter. It
should eliminate all hut the most severe interference problems. Should you
still experience power-line interference, you should take some or all of the
following steps:

• Install bypass/ isolation devices to the noisy appliance
• Fix the defective switch
• Install a separate power line
• Install a special line filter designed for use with computers and other

electronic equipment
In severe conditions, all ac tions may be required.

Power line problems are rare and many times can be prevented hy proper
choice of installation location. The more complex the system and the more
serious the application, the more consideration you should give to providing
an ideal power-source for your Computer.

2/2

-

-

-

• 3 / Operation

-

-

Turning the Computer On

The drive should be empty (no diskette in place)
when you turn on the Computer.

Push the Power Switch up to the ON position.
After a few seconds for warmup, the Screen
should be filled with a solid white field.

The Computer wilJ now perform a quick cheek­
out of the bootstrap ROM, Z-80A mieroprocessor,
and the first 32K of RAM.

Next, the Computer will prompt you to insert the
Operating System Diskette. See Loading the
Operating System.

Using the RESET Switch

If you should ever lose Keyboard control of the System, or you simply want to
re-initialize, press RESET up momentarily and release it. The Computer will
repeat the power-up sequence, but the contents of user memory will not be
affected.

Note: You do not need to remove the diskette during this Reset sequence.

-

~=--"-),,L IIUU- ~ -

' '

3/1

t• MODEL II OPERATION

Notes on Diskettes

Diske ttes are precision recording media. Handle them carefully, as described
under Section 5, Care and Maintenance. Be sure you don ·t touch the exposed
diskette surfaces.

Before inserting the diskette, check the write prott:ct notch. (See
illustration.) If you do not want to write to that diskette, it is a good idea to
leave it ·'write-protected". This way, the Operating System will not let you
accidentally write to that diskette. To write-proteet a diskette, just leave the
write-protect notch UN covered. (Sec Figure 4.)

If you do want to write to the diskette, cover the write protect notch with
gummed-foil tape provided with the diskette .

Sector Hole

Leave Uncovered
tor Write-Protection

Jacket Read/Write
Notch

Figure' -I. A diskelfe and a wrile-prolected diJkette.

Note: /\.ny alteration of the data on the diskette - even the deletion of data
or programs, requires that the diskette NOT be write-protected. (Cover the
notch with gummed foil tape.)

Inserting a Diskette
1. If the drive door is closed, open it hy pressing the release har until the door

springs open. (Refer to Figure 5.)
2. Remove the Operating System diskette from its storage envelope. Grasp

the label side with the label facing away from the Display and insert it into
the drive slot (see photo).

3. Gently push the diskette a ll the way into the slot. As the diskette reaches
the back of the drive slot, you will feel a slight resistance from the
seating/eject spring. Continue pressing the diskette in until it locks into
place.

4 . Close the door by moving it toward the left until it clicks into place. Some
pressure may he required.

3/2

-

-

-

-

-

•

--ca-,
OPERATION ~llti1f 1

Removing a diskette

Never remove a diskette while the Drive Select light is on, or while a disk ftle
is Open.

Press the Drive Release Bar. The door will open and the diskette will be partly
ejected. Carefully remove it, taking care that the shiny diskette surface
doesn't touch the chassis or drive door on the way out.

Note: Once a diskette has been seated in the drive, you must shut the drive
door before you can remove the diskette.

Figure 5. Inserting a diskette (Label might extend vertically across the diskette) .

Loading the Operating System

When the Computer prompts you to INSERT DISKETTE, carefully insert the
Operating System diskette into the drive.

As soon as you close the drive door, the Computer will begin the Operating
System bootstrap.

(If nothing happens when you close the drive door, the diskette is probably
inserted incorrectly. Remove it and re-insert it correctly.)

The Computer will then execute a dignostic program before starting the
Operating System. This lets you verify that the entire system is in working
order - before you attempt any data processing.

After Completing the Diagnostic Program, the Computer will load the
Operating System. See the Operating System Manual for details .

3/3

t \/lllfli~ MODEL II OPERATION

Keyboard Operation

The Keys can be divided into four functional groups: Alphanumerics, Mode­
Select, Numeric Keypad, and Control Keys, as illustrated below:

Repeat Key

Figure 6. Functio11al groups of Model I I keyhoard.

Numeric Keypad -
for skilled
10-key operators

You use the a lphanumeric keys just as you would on a normal typewriter.
However, each of these keys can send more than o ne character or code to the
Computer, depending on which mode you've selected.

3/4

-

-

•

-

-

-

OPERATION ..,ffl11.·~.1,½,.,.•.J.
lit .

Keyboard Modes

The table below describes the typical use of the various modes. This use is
determined by the Operating System or by the program currently in
execution.

@#Oil
1!•It33

Mii;j!

Unshift - Lets you input lower case letters, numbers
and unshift punctuation symbols.

Shift - Lets you input capital letters and shift punctua­
tion symbols. Hold down SHIFT while pressing the
desired key, or press the LOCK key once so the red
light comes on; while that light is on the Keyboard will
output only Shifted characters. To return to the Unshift
mode, press SHIFT again.

Caps - Press the CAPS key once and the red light will
come on. Typically, in the Caps mode, the alphabet keys
A-Z send capital-letter codes only, and all other keys are
unaffected. To return to the Unshift mode press CAPS
once so the red light goes off.

Control - Hold down the CTRL key while pressing
one of the alphanumerics; this will output the "control"
code assigned to that key.

Note: The Shift mode over-rides the Caps mode. So if both LOCK and
CAPS lights are on, the Keyboard is in the Shift mode.

Control Keys

There are 12 Control Keys. Each key outputs a single control code -
regardless of what mode the keyboard is in. How the Computer interprets
these control codes depends on the Operating System, but here's a
description of the typical function of each Control Key:

Escape - Usually used to exit for a subcommand.
ignoring preceding characters in the current line.

Tab - Advances the cursor to the next tab position. The
software typically sets Tab positions at 8, 16, 24, 32, etc.

3/5

f. MODEL II OPERATION

Control Keys (cont.)

rn!n
~

ljJ;j=t.13

i:t•)!•)

SPACE BAR

D

D

3/6

Cancels the last character typed and moves the cursor
back one space.

Interrupts anything in progress in the machine and
returns to the command level.

Pauses execution of the current program. Press HOLD
a second time to continue execution.

Signifies the end of the current line. The Display Cursor
will drop to the beginning o f the next line. Note that the
two IAA~O::i;i keys are ide ntical. The rightmost
!::f~jj::i;j is for convenient use with the numeric
keypad.

Enters a space (blank) character and moves the cursor
one space forward .

Cursor Control - Moves cursor back one space without
cancelling previous character.

Cursor Control - Moves cursor forward one space with­
out e ntering a blank-space character.

Cursor Control - In some programs, moves cursor up
one line without erasing previously entered characters.

Cursor Control - In some programs, moves cursor
down one line without erasing previously entered charac­
ters; docs not signify end-of-line.

Function Keys - Software Programmable. Outputs a
control code which can be used by the Operating Syste m
or Applications Software for special functions.

-

-

-

-

-

. . t:1.- 1

OPERATION ~iffi=-tl, -,,
J..i

'

Numeric Keypad

Clustered at the right of the Keyboard is a set
of number keys, arrow keys and a second
ENTER key. The arrow keys and ENTER

keys are described above. The number keys
are identical to the number keys on the top
row of the main key cluster - except that
these number keys output numeric character
codes only. SHIFT , LOCK , CAPS and
CTRL keys do not affect the output from the

numeric key cluster.

These keys are convenient for data entry by
skilled 10-key operators.

Repeat Key

This special convenience key works in con­
junction with any key combination in any
mode. Simply hold down REPEAT while
you press the desired key(s). While you hold
down these keys , the keyboard will output a
steady stream of the desired characters.

Video Display Adjustment

Brightness and Contrast controls are located in the recessed area at the
bottom left of the Display Console. Adjust as necessary for a comfortable
display quality.

C B

3/7

-

-

4 / Power-Up Diagnostic Messages
Whenever the Computer is turned on or Reset, it executes a built-in
diagnostic program to help insure that the system is in good working order. If
the Computer detects a hardware fault or other problem, it will display an
error message and then stop. This checkout program reduces the chance that
you will lose time or data by using a defective system without knowing it.

If one of these error messages is displayed , the first thing you should do is
Reset the Computer, and attempt to duplicate the error. If the message
re-appears, consult the table below.

Note: This program does not check for multiple faults; as soon as a single fault
is found , the Computer displays the appropriate message and stops.

Error
Code What it means - What to do about it

DC Floppy Disk Controller Error. Defective Disk-
ette - Try another.
Defective DC Chip or Drive.

DO Drive not Ready. Improperly inserted diskette
- Re-insert and reset.
Defective diskette - Try another.
Defective Drive.

SC CRC Error. Invalid data on diskette or defcc-
tive diskette - Try another.

TK Record not found on bootstrap track . Improp-
erly formatted diskette or defective diskette -
Re-format or try another.

LD Lost Data during read. FDC or Drive fault.

RS Non Radio Shack diskette . Diskette IS not
Radio Shack Model lJ Operating System for-
mat - Remove, insert proper diskette, and
reset.

(Continued on next page)

4/1

t \-,- MODEL II OPERATION

Error
What it means - What to do about it Code

CK ROM Checksum Error. Defective ROM.

Z8 Z-80 Fault. Defective CPU.

MF RAM Fault. Defective RAM in address range
1000H-7FFFH.

Pl PlO Chip Failure.

OM OMA Chip Failure.

MB RAM Fault. Defective RAM in address range
OOO0H-0FFFH

MH RAM Fault (on 64K systems only). Defective
RAM in address range 8000H-FFFFH

SI SIO Chip Failure.

Before you ask for help ...

Try the operation several times. Try using other diskettes. Recheck to see
that all power and interconnections are right.

4/2

-

-

- 5 / Care and Maintenance
Care of Diskettes

In general, handle diskettes carefully, using the same precautions you use
with tape cassettes and high-fidelity records. A small indentation, dust
particle, or scratch can render all or part of a diskette unrec1dc1ble -
permanently.

• Keep the diskette in its stornge envelope whenever it is not in one of the
drives.

• Do not place a diskette in the drive while you are turning the system on
or off.

• Keep diskettes away from magnetic fields (transformers, AC motors,
magnets, TVs, radios, etc.). Strong magnetic fields will erase data stored
on a diskette.

• Handle diskettes by the jacket only. Do not touch any of the exposed
surfaces. Don't try to wipe or clean the diskette surface; it scratches
easily.

• Keep diskettes out of direct sunlight and away from heat.
• A void contamination of diskettes with cigarette ashes, dust or other

particles.
• Do not write directly on the diskette jacket with a hard point device such

as a ball point pen or lead pencil; use a felt tip pen only.
• Store diskettes in a vertical file folder on a shelf where they are protected

from pressure to their sides (just as phono records are stored).
• In very dusty environments, you may need to provide filtered air to the

Computer room.

Tips on Labeling Diskettes

Each diskette has a permanent label on its jacket. This label is for "vital
statistics" that will never change. For example, to help keep track of
diskettes, it's a good idea to assign a unique number to each diskette. Write
such a number on the permanent label. You might also put your name on the
diskette, and record the date when the diskette was first put into use.
Remember, use only a felt tip pen for marking.

This "'permanent" label is not a good place to record the contents of the
diskette - since that will change, c1nd you don' t want to be erasing or
scratching out information from this label.

5/1

t "1 MODEL II OPERATION

Keep such directory information on the storage box or in a separate
record book. using the diskette number as a key to all record-keeping.

u~® 0 ®CQ} ~@@@D IDI

=. Certified
Diskette

Figure 7. Labeled diskette.

512

•

•

•

-

-

c:a,-, ------- --- --...)-:;•

-------------------- 111111:r,
6/ Add-Ons
Inside the Display Console are slots for eight printed circuit boards. Four of
these slots are taken up by the boards required by the basic system -
Processor, Video Display, Floppy Disk Controller, and Random Access
Memory (RAM).

Adding RAM

If your system has 32K of RAM , you can add another 32K by returning the
unit to Radio Shack. Another 32K board will be added to the card-cage,
leaving three slots still open for future enhancement of your system.

Systems shipped with 64K of RAM have four slots open for future additio ns,
since a single 64K board is used in place of two 32K boards.

Decimal Address
0

32767

32768

32K RAM STOPS HERE

65535 ~---64_ K_RAM __ S_~_O_PS_H_ERE __ ~--~

Hexadecimal Address
X'OOOO'

X '7FFF'

X '8000'

X 'FFFF'

RANDOM ACCESS MEMORY CONFIGURATION AFTER SYSTEM IS INITIALIZED

6/ 1

I ~ -

tlfUllli
Adding Disk Drives

Each drive you add will increase the on-line storage of your system by 509,104
bytes (roughly equivalent to 300 double-spaced typewritten pages).

Connection of additional Disk Drives is quite simple. The connector is on the
back of the Display console, and a connector cable will be supplied with the
Disk Expansion Unit.

Note: When the Disk Expansion Unit is not connected to the Model II , a
specal terminator must be connected to the Disk Expansion connector on the
back of the Display Console. The Model II comes with this terminator
installed.

Further instructions are provided with the Expansion Unit, and can be added
at the end of this Operation Manual.

- -
Figure 8. Disk Expansion Unit with three additional Disk Oril'es.

6/2

-

,

•
- :C:1 1

ADD-ONS •uyc"J
Connecting Serial Interface Equipment

The Model II provides two serial 1/0 channels, for connection to equipment
like Telephone Interface Modems, Serial Line Printers, etc. Connection
instructions will be provided with these.rial equipment. You can add such
instructions at the end of this Operation Manual. (See Specifications for a
description of the Serial Interface Signals.)

Figure 9. Radio Shack Telephone Interface II Modem
- for connection of computer system to telephone line.

-

Dt&K & XPANSIION

lit ········ ·········]ol
PARALLEL PRINTER

CHANNl!L

SI ·················I? ····· ··· ·· ···· ·· ·

l!ll!IIIAL CMANNl!Ll!I OISK AC POWl!R s\• •.-, .- .. ,.,'l? FUSe ~
A .•.. ~

• st_._.)? @

Figure /0. Connect Telephone Interface Modem (or other serial /JO device) to serial
channel connection on the back panel of the video screen.

6/3

i r '1 tt- fllf MODEL II OPERATION

Parallel Interface Equipment

The Model II provides one parallel l/0 channel, for connection to Radio
Shack Line Printers and other compatible parallel-interface equipment.
Connection instructions will be provided with the equipment. You can add
such instructions at the end of this Operation Manual. (See Specifications for
a description of Parallel I ntcrfacc Signals.)

------- .a ____ .. ----

Figure 11. Radio Shack Line Printer Ill

Ot9K fi XPAtu.lON
PAR A LLliL PRtNT•R

CMANNliL

SI;:: ::: :::: ::: ;:: : !?

----____ --

S&Rt AL C M ANN• L8 0181K AC P O\Nll!D

st•••••·•·•·•)? "UU ~ •··· ···· ·· ·· · ~

. s \-::::::::::::] ? @

Figure 12. Connect Rad iv Shack Line Printer (or other compatible parallel imNface
equipmem) w parall('[channel cvnm:ctivn on back panel of video screen.

6/4

•

-

-

-

-

7 / Specifications
Display Character Set

Here are the 32 graphics characters available on the Model II Display, along
with their corresponding character codes. For further detail on the use of
these codes, see the Operating System Reference Manual.

Note: A reverse-character (black on white) is available for each of the
display characters, including alphanumerics.

-,, .I 1T~ .I I
00 01 02 03 04 05 06 07

1-I J. tf f f f
08 09 0A OB OC OD OE OF

I I I I - -• 10 11 12 13 14 15 16 17

- • I I i
18 19 1A 1B 1C 10 1E 1F

7/1

:·CII f 'U MODEL II OPERATION

Power Supply

Power Requirements

7/2

105 - 130 VAC, 60 Hz,
Grounded Outlet
Maximum current drain: 2.0 Amps
Typical current drain: 1.5 Amps

-

-

-

-

-

SPECIFICATIONS -.llfT°.,. ,
Ii;
. -

a
'

Floppy Disk Drive

Total Storage Capacity
(for User Data Capacity,
See Operating System Manual)

Diskette Organization
Tracks per Diskette
Sectors per Track
Bytes per Sector

Data Transfer Rate

Required. Media

Preventive Maintenance
Interval

Diskette Life*

509, 184 bytes per diskette

77 (0-76)
26 (0-25)
256 (except Track O = 128)

500,000 bits per second

Radio Shack 8" Floppy Diskettes,
Catalog Number 26-4905, or
26-04906 (pkg of 10)

8000 Power-On Hours (typical usage)
5000 Power-On Hours (heavy usage)

3.5 million~ per track

*In practice, diskette life is usually limited by improper handling. Follow
handling recommendations for maximum use.

7/3

1-C:Jl, f ~ b MODEL II OPERATION

,

Serial Interface Signals and Levels

Two channels are available . via the DIJ-25 connectors on the back of the
Displa y Console. The signals and levels conform to the RS-232-C standard.

Channel A is designed to allow asynchronous or synchronous transmission .
Channel B is designed for asynchronous transmission only.

The DB-25 connector pin-outs and signals availahlc are listed below.

CHANNELA CHANNEL B

STANDARD
(PIN#) RS-232-C SIGNAL

STANDARD
RS-232-C SIGNAL

1/0 TRANSMIT S.E.T. 15 GROUND
GROUND 1,7 RECEIVED DATA
RECEIVED DATA 3 RECEIVER XMITTER CLOCK
RECEIVER CLOCK 17 DATA SET READY
TRANSMIT CLOCK 24 CLEAR-TO-SEND
DAT A SET READY 6 CARRIER DETECT
CLEAR-TO-SEND 5 TRANSMIT DATA
CARRIER DETECT 8 REQUEST-TO-SEND
TRANSMIT DATA 2 DATA TERMINAL READY
REQUEST-TO-END 4
DAT A TERMINAL READY 20

1 2 3 4 5 6 7 8 9 10 11 12 13

7/4

-

PIN#

1,7
3

17
6
5
8
2
4

20 -

-

-

-

-C:. t
SPECIFICATIONS -IIOU ~ &_2;,s•

Parallel Interface Signals and Levels

The Model II includes a parallel interface designed for connection to a line
printer via the 34-pin connector on the back panel of the Display Console.
Eight data bits are output in parallel, and four data bits are input. All levels
are TTL compatible.

The connector pin-outs and signals available are listed on the next page.

1 3 5 7 9 11 13 15 17 19 2 1 23 25 27 29 3 1 33 .
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

7/5

rf @l . ~- T~ MODEL II OPERATION

SIGNAL FUNCTION PIN# -
STROBE* 1 µS pulse to clock the data from 1

processor to printer

DATA0 Bit 0 (lsb) of output data byte 3

DATA 1 Bit 1 of output data byte 5

DATA2 Bit 2 of output data byte 7

DATA3 Bit 3 of output data byte 9

DATA4 Bit 4 of output data byte 11

DATAS Bit 5 of output data byte 13

DATA6 Bit 6 of output data byte 15

DATA? Bit 7 (msb) of output data byte 17

ACK* Input to Computer from Printer, low 19
indicates data byte received

BUSY Input to Computer from Printer, high 21
indicates busy -PAPER Input to Computer from Printer, high 23

EMPTY indicates no paper - if Printer doesn't
provide this, signal is forced low

SELECT Input to Computer to Printer, high 25
indicates device selected

PRIME Output to Printer to clear buffer and 26
reset printer logic

FAULT Input to Computer from Printer high 28
indicates fault (paper empty, light
detect, deselect, etc.)

G ROUND Common signal ground 2.4,6,8,10
12,14,16,18,
20,22,24,27,
31 ,33

NC Not connected 29,30,32,34

*These signals are active-low.

1tad1e lhaeK

TRS-80 Model 11
Disk Operating System

Reference Manual
A Description of the Operating System:

General Information, Operator Commands,
Technical Information

CUSTOM MANUFACTURED IN THEUS.A. BY RADIO SHACK ~ A DIVISION OF TANDY CORPORATION

•

RADIO SH ACK IRJ

M O D E L I I T R 8 D O B

1 / G E N E R A L I N F O R M A T I O N

•
CCI CoPYriSht 1979 bv Radio Shack, A Division of Tandv Corporation

-

..

•

•

MODEL. II TRSDOS

(M2DOS0 B/:l.0/7'i':i

CONTENTS

GENERAL. INFORMATION

Intr-oductii:1n a, :;;-~

Memory Re9lJirements •nnaaaaaaa ••• -ana 4
Loading TRSDOS 5
Using the Kevboard ... u,.......... 5
Enterin9 a Command........................ 6
Fil,e SPecification•.•••......•. :l!/.)

2. Libr·ar···t Corr1n-,a.nd~- 15
3. Utility Pro9rams 69

BACf'(UP • • • • • • • • • • • • • . . • . . . 70
FORMAT •••••.....•....•••..•••• ,, • . • • • 7:2

4. Technical Information 75
Diskette Or9anization 76
Dis.k Fi l<,s- . • • • • • • • • • • . • • • • . • • . • • • • • • 77
How to_ Use the StJPervisor Calls 82
List of Error Codes and Messa9es 85
Supervisor Calls 86
Pr·o9ramrnin9 with TRSDOS 149

PAGE 1

MODEL I I H'i\JDOS GENERAL INFORMATION P/.'1GE 2

Intr-oduction

Model I I TRSDOS (11 Tr•i;;:.;;:.-.. I)o:,.:.. 11
) i:E, a. F~ouJer·ful and Bi:L'.:-··t-... to·· .. use Disk

0Peratin9 Svstem, Providing a f~Jll set of librarv commands and
LttilitY Pro9rarnsu In addition, manv useful Svstem r·outines can t•e
called directly bY user Pro9rams~

l.ibr·arv commands are tvPed ir, fr·om the l'RSDOS command level to
accomplish a variety of operations, including~

Initialization--setting Pr-inter· Parameters, date and time,
etc~
F'i le--handl ins1---·-ci:,pvin9, r·enamin9, df!l,._=:tin9,
Protecting, etc.
File access···-·loadin9 into memor·v~ listin9 to
Pr· i flt C"! r· or· Di:'.::- r-:i- ·1 ~:1.·-i-·, etc~
Error ider,tification

See Library Commands for details.

UtilitY Pro9rams Provide essential ser·vices like:
Formatting blank diskettes.
Ma.kin9 backup copies of entire di$kettes.

See the Utility Pro9rams for detailsu

Svstem routines ar·e executed
to absolute memor~ addressesu
catf.,rS.lor·ie:=.::

B··rs tf~m contr·o ·1
~<e··tbi:1a.r·d i nPut
Video DisPlav input/output
l.ine Printer outPut
r:.:·i·le ~1ci::ess
ComPutational functions

via function codes instead of
r,,outi,-,,,s ,avai La.b'l<e 'fal 1 ini;,:,

See the Technical Information section for details~

t-.!1:it:a.t ion

ca.11 s.
s i ::{

For· clarity and brevity, we use some sPecia1 notatior1 and type
stvles in this bookn

CAPITALS and Punctuation
Indicate material which must be entered exactlv as it appears.
(The only Punctuation sYmbols not entered are triPle-Periods,
i=!}::F~la.ined bel,:iw ..) For· B>~amPle, in th-e 1 ine::

·- IR-· ~ c-v,--" u. ' ,,::)) ,.J./

every letter and char·acter should be tYPed exactly as indicated •

lowercase italir~
RePr·eser,t wor·ds, lE.'i:ter·'.:., char·acter~. or· valt.Jf.'~· ·y·ou SUPPlY from a
set of accEPtable values fo~ a Particular command" Fo~ example,
the l int•::

..

•

•

•

MODEL II TRSDOS GENERAL INFORMATION PAGE 3

LIST filesp;;,c
indicates that YOU can SUPPIY any valid file specification (defined
later) after LIST.

ltriPle-Periodsl
Indicates that Precedin9 items can be reP~ated. For exam~le:

ATTRIB filesPec loPtion, ••• l
indicates that several oPtions may be repeated inside the braces.

This special svmbol is used occasionallY to indicate a blank space
character (ASCII code 321.

X'NNNN'
Indicates that NNNN is a hexadecimal number. All other numbers in
the text of this book are in decimal form, unless otherwise noted.
Fi::• r· e>~amP1-e:

X'7000'
indicates the hexadecimal value 7000 (decimal 28672) •

MODEL I I Tl'?SDOS GENERAL INFORMATION PAGE 4

Memory Re9uir·ements

32K Model II Svsten,s ar-e SUPPlied with a 32K version of TRSDOS;
64K Svstems, with a 64K version. The two versior,s are No·r·
interchan9eable--thou9h the onlv difference is in the locatior1 of
the Special Programmin9 Area (see illustration).

TRSDOS occupies 6.1 tracks on the Svstem diskette (39,040 bvtes).
However, onlv a small Portion is actuallv in memory at any one
tin1e. The Supervisor Pro9r·am, ir1Put/outPut drivers, and ot~1er­
essentials are al1tlavs in memorv. Auxiliarv code is loaded as
needed into an 11 overlav area".

Memory addresses 0 thro~J9h 10239 (X'0'-X'27FF') are reserved for
thE.• 0F:;-;:_,r·a.tin9 fl·-r·:::.tem~ C€1 r·ta.in comm-3.nds-, i::;-r.11 11 hi9h ov1.,.'=!r·la·-,..s 11

,;

also use memory addresses ~JP to X'2FFF' (details Provided in the
Con1mands sectior1u User Pr·o9r·ams must be located above X'27FF' ~
and You ma·v want to locate them above X'2FFF' to allow use of the
hi9h over·laYs uJithout loss of Your· Pro9ramu

DECIMAL HEX
ADDRESS ADDRESS

iZI
~ ·--·-··--"·--

SYf.,TEl"I AF<EA

~---·----------------
USER AREA (SHARED WITH
TRSDOS "HIGH OVERLAYS")

: X' '.i8!/!!/!'

-·------ .. ----------·-------------·-----~
12288 :X'3000'

TOP*

USER AREA UNTOUCHED*•
BY THSDOS

:----------------------------------, TOP*
M/W BE

RESERVED BY TRSDOS FOR
SPECIAL PROGRAMMING

32767 or-g------·-.. -.. Last Memor·Y Address-.. -· .. -------····~X'7FFF' or

MEMORY REQUIREMENTS OF TRSDOS

Note~ The term 11 user Pro9ram" aPPlies to anv Pro9ram which is not
a Par·t of TRSDOS. l'herefore BASIC is a user Pro9ram~ For memor·y
requirements of BASIC~ see the BASIC Reference Manual~

~TOP is a memory pr·otect address set bv TRSDOS. If TRSDOS is not

•

Prot ❖~ctin\3 hi9h m-;:.:!mor··y·~ th~~n TOP is thf:! '.:.a.me as 11 La.~:-t M~~m1:ir··y· ----., ..
Addr·es'.:. 11

•

**Sin9le-d~ive COPY from one diskett~ to another·, BACKUP and
FORMAl. use ALL user mernorv.

•
MODEL II TRSDOS GENERAL INFORMATION PAGE 5

Loading TRSDOS

Se-e the 0Pe.-r·at.:ic•n MarPJa1 for· instr-ucti.on:!, i:,n connect.ion, Power·-ur­
and inserting tha Bvstam diskette.

Note: A Svstam diskette must be in Drive 0 (the built-in unitl
whenever the Computer is in useR Whenever the Computer is turned on
or· reset, it will autc,matic::'-!.llY lc,ad TRSDOB fr·om Dr·iv,e 0.

After the Svstam starts UP• it will PromPt YOU to key in the date.
TYPe in the data in MM/DD/YYYY form and Press <ENTER>. For
example:

07/07/1979 <ENTER>
for July 7, 1979.
Next the System will Prompt YOU to keY in the time. TO SKIP THIS
f~UESTION, Press <ENTER>. The time wi 11 start at 1110:11)11):11)0.

TO SET THE TIME, typ• in th,;, time in HH.MM.SS 24-hour· for·m. Period,.
are used instead of colons since thev're easier to tvPe in. The
sec::onds are optional. For example•

14.30 <ENTER>
for· 2 :·30 Pm ..

:e The SY~-tem w-i 11 r·ecc,r·d the time and ljatf: ir1+.er·r1al l··r and r-etur·n with
the message:

•

TRSDOS READY

Usin9 the Kevboard

TRSDOS distin9uishes betwe,;,n UPPer and lower case letters.
Therefc,re

di r·
is not the same as

DIR
Sinc::e TRSDOS c::ommands ar·e always. c::aPitalized, ye,,;' 11 Pr-,;,bablY find
it convenient to operate the K,;,yboard in the Caps mode (Press CAPS
so the red liiht comes onl. That way, all the alphabet-keys are
interPreted as c::aPital letters, regardless of whether the SHIFT key
is ·bein9 PressedM

Certain control keys are useful in the Command Mode:

ESC Escape--Cancels the current line and lets vou sta~t
OV'l::!'r·.

BREAf~

<-

Interrupts line entrv and starts with a new lineb

BacksPac•s the cursor without erasin9 anv characters~
Us@ this to Position the c::ursor for correcting a
po~tion of a line.

-·> Fo~ward-sPaces the cursor without erasing anv

MODEL II THSDOS GENERAL INFORMATION

P.ACf(
SPACE

ENTER

HOLD

charactersa Use to Position the cursor for correcting
a Portion of a line.

Backspaces the cursor, erasin9 the last
character You tvPed. Use this to correct entrv
er·r·or·s ...

Si9nifies end of line. When vou Press this kev,
TRSDOS will take vour command. Only those characters
aPPearin9 to the left of the cursor will be used.

Pauses execution of a command .. Press a9ain to
continue. N,:,t functi,:inal in all commands.

TAB Advances the cursor to the next 8-column Position.

SPACE

Tab Po::.itions- ar·e at column::- IZI, 8, 16, 24, etc ..

Enters a space (blank) character and moves the cursor
one character forward.

REPEAT For convenience when vou want to repeat a sin9le kev,
hold down REPEAT while Pressin9 the desired keY. For
example, to backspace halfway back to the be9innin9 a
the line, hold down REPEAT and BACKSPACE.

PAGE 6

If YOU tYPe any other control (non-alphanumeric, non-punctuation)
keY, a+/- sYmbol will be disPlaYed for that keY, but the control
keY code will be sent to the Computer. Such control kevs will either
be i9nored or cause a Parameter error to occur. See the Kevboa.rd
Code MaP in the APPendix for control codes.

Enterin9 a Command

Whenever the TRSDOS READY Prompt is displayed, You can tvPe in a
command, UP to 80 characters. If the command line is less than 80
characters <as is usually true), vou must Press <ENTER>to si9nifY
end-of-line. TRSDOS will then 1'take 11 the command.

For- e::-::a.mPle,
CLS

t··tPe:
<ENTEH>

and THSDOS will clear the DisPlav.

Whenever You tYPe in a line, TRSDOS follows this Procedure:

First it looks to see if what vou've tvPed is the name of a TRSDOS
command~ If it is, TRSDOS executes it immediately.

If what vou tvPed is not a l'RSDOS command, then TRSDOS will check to
see if it's the name of a Pro9ram file on one of the drives.

Whan saarchin9 for a file, THSDOS follows the sa9uence drive 0,
drive 1, etc--unless vou include an exPlicit drive specification
with the file name (described later on).

If TRSDOS finds a matching user file, it will load and execute the

•

•

MODEL II TRSDOS GENERAL INFORMATION PAGE 7

• file. Otherwi~.e, You, 11 9et an er·ror· me::.sa9e .

•

•

MODEL. II TRSDOS GENERAL. INFORMATION PAGE 8

Command S•y·n ta::-::

Command svntax is the 9eneral form of a command, like the 9rammar of
an En91ish sentence. The svntax tells vou how to Put kevwords (like
DIR, LIST, and CREATE) to9ether with the necessarv Parameters for
each kevword. In this book, we Present 9eneral svntax inside 9rav
boxes, so thev 7 re easv to reco9nize.

There are three general command formats:
Ni:1-f i le commands.
One-file commands
Two-file commands

No-file commands take the form:
:-----------------------------~-------------------------------:

comm~.1nd {oPtj_oqg.} i;:Qm[ls?oi·
<oeti9o~> is a list of one or more Parameters that

mav be needed bv the command. Some commands have
no options. T 1e braces£) around options can be
omitted when n· _omment is added at the end :

:

of the command line.
commeot is an optional field used to document the

Purpose of the command-line. Comments are useful
inside automatic kevboard entry files (see BUILD
and DO commands).

:---::
For· e::<amPle:

TIME 14.30.12)0
is a no-file command, TIME, followed bY the Parameter option,
14.312).12)12). No braces are re~uired in this example.

TIME {} Get cur·r·er,t time.
is a no-file command, TIME, followed by a comment. Note that the
b~aces are required to tell TRSDOS that "Get current time 11 is a
comment and not an option list.

One-file commands take the form:
: -----•-----------•-•----•--•--•---••-<HH---••--••---u-•••----•----------•-----::

command filesPec (oPtiops) comment
filespec is a standard TRSDOS file specification

as described later in this section.
(oPtionsl--See descriPtion above.
comment--See description above.

'

::---::
For e>::amPle:

CREATE DATAFILE ,(NGRANS=•412l") Need Lil2) 9r·anu 1 es.
is a one-file command, CREATE, followed bv a filesPec, DATAFILE, an
option list, {NGRANS=40), and a comment, Need 40 g~anules. In this
e::<a.mPl~~, -1:h-e br-aces {) ar·e r·e·quir-ed to tel 1 TRSDOS wher·e the oPtion
list ends and the comment be9ins.

•

•

•

•

•

•

MODEL II TRSDOS GENERAL INFORMATION

Two-file commands take the form:

: command filesP§C-1 delimit~r filesPec-2 (options} comment :
: fi lesPec-t and -2 ar·e TRSDOS file specifi,:ai:io)n~. as

described later in this section.
: delimiter is one of the following:

blank sPace or spaces (indicated as~)
a comma, surrounded bv optional spaces

)iTO.,V s.ur·r·o1.Jnded by optional 5-Paces-.
(options>--See descriPtion above.
comment--See descriPtion above.

:

:---:
For· eJ-::amPle:

RENAME PAYROLL! TO PAYROLL2

PAGE 9

is a two-file command RENAME, followed bv filesPec-1 (PAYROLL!>, a
delimiter, and filespec-2 IPAYROLL21 •

MODEL II TRSDOS GENERAL. INFORMATION PAGE 10

File Specification

The onlv wav to store information on disk is to Put it in a disk
file. Afterwards, that information can be referenced via the file
nam<? You 9av;, to the file when You cr·.,.at.,.d c,r· r·enam<?d it.

A file SPecification has the 9eneral form
: ------------------.. -~·-·-~-------·----------------------------·----:
, filenawetext.Password:d(disknamal

fi len;imeconsi~.t~. of~ a letter· fol lowed by JJP to
seven optional numbers or lette~s.

/ext is. an optii:inal r,ame-~xter,:':-i(H1; ~ i~. a ::.e-=iuenc~ : -of uP to three numbers or letters. :
.Password is an optional P&ssword1 Password is a ' : se~uence of UP to ei9ht numbers or letter~ :

: :d is an optional drive specification; dis one of the :
,,.,. di9its 0, 1,:2,:3. -

(diskname) is an optional field of UP to 8 lette~s :
: or numbers. If this field is included, it must be :

Preceded bv a drive specification.

'
'

Note: There can be no blanks inside a file
specification. TRSDOB terminate• the file specification:
at the first blank space.

: -------------------~------..... ----·-------~--------------------:
For example:

FileA/TXT.Mana9er:J(ACCOUNTBI
r<?ferences the file named FileA/TXTIACCOUNTBl with the Password
Mana9er, on Drive 3, diskette name ACCOUNTS.

Fil<? Names

A file name consists of a name and an optional name-extension. For
the name, vou can choose anv letter, followed bv up to s•v•n
additional numb*rs or letters. To use a name extension, start with a
dia9onal slash/ and add UP to three numbers or lette~z~

For· e::-~amP 1 e:
MODEL.:2/TXT
NAMES/123
TEST

lNVNTORY
Au9ust/15
TEBT1

ar·e all valid and DISTINCT file names.

DATA11/BAS
~JAREHOUS
TEST/1

Althou9h name-extensions are optional, they a~e useful for
identifYin9 what tYPe of data is in th<? file. For example, YOU mi9ht
want to use the following set of extensions:
/BAS BASIC Pro9ram
/TXT ASCII text
/MIM Memory ima9e
/REL Relocatabl• machine-1an9ua9e Pro9ram
/DVR InPut/OutPut driver

•

•

•

•

•

•

MODEL II TRSDOS GENERAL INFORMATION PAGE 11

Drive Specification

If YOU give TRSDOS a file command like:
KILL TEST/1

the 8Ystem will search for the file TEBT/1, starting at Drive 0 and
9oin9 to the other drives in se9uence 1,2,3 until it finds the
f i J e.

AnY time TRSDOB ha;. tc, ()pen a file (e.9., tc, List it fc,r· y,:,u), it
will follow the dr·iv,r, 1,;ok•.JP se9u,r,nce 121, l, 2, 3. When TRSDOS has. to
write to a file, it will skiP over any write-protected diskettes,

It is Possible ta tel1 the System exactly which drive You want ta
U.!,e,: b•y• mean5', c,f the drive S.Pt:cification. A dr-ive specification
consists of a tolon: followed bv one of the di9its 0,1,2, o~ 3,
corresponding to one of the four drives.

For example:
KILL TEST/113

tells the BYstem to look for file TEST/1 on drive 3 only •

MODEi... I I TRSDOS GENERAL INFORMATION PAGE 12

Pas~.wor·ds

You can Protect a file from unauthorized access by assi9nin9
passwords to the file. That wav, a Person cannot access a_ file
simPlY by referring to the file name; he must also use the
aPProPriate Password for that file~

l'RSDOS allows vou to assi9n two Passwords to a file:
An Update word, which 9rants the user total access
to the information (execute, read, write, rename or
d,;,'i ,;,i:,;,).

An Access word, which 9rants the user limited
access to the information (see ATTRIB).

When YOU create a file, the Update and Access words are both set
e9ual to the Password vou sPecifv. You can chan9e them later with
th,;, PROT or ATTRIB command.

A Password consists of a Period
numbers. If vou do not assi9n a
a default Password of 8 blanks.

followed by 1 to 8 letters or
Password to a file, the SYstem uses
In this case the fil~ is said to be

unprotected; one can 9ain total access simPlY by referring to the
file namea

For examPle, suppose You have a file named SECRETS/BAS, and the file
has MYNAME as an uPdate and access word. Then this command:

f<ILL. SECRETS/BAS. MYNAl"IE
will allow th,;, fil,;, to b,;, Kill,;,d.

SuPPose a file is named DOMAIN/BAS and has blank Passwords. Then the
command:

KILL DOMAIN/BAS.GUESS
will not be obeyed, since GUESS is the wrong Password.

Disk Nam,;,s.

When YOU reference a file like TESTER/BAS:3, TRSDOS will use
whatever diskette is in drive 3. However, if vou add a disk name to
th,;, fil,;, sp,;,cification, TRSDOS will first ch,;,ck to s,;,,;, that th,;,
correct diskette is in the drive. (You assi9n disk names durin9 the
Format or· Bac~cup Process.)

Note: OnlY the COPY command looks at the disk name and checks that
the correct diskette is inserted. The other commands i9nore the disk
name in Version laiu

A disk name consists of from 1 to 8 letters and numbers inside
Parentheses (). When You include the disk name in a file
specification, YOU must also include the drive number =&a Otherwise
the disk name will be i9nored.

For· e>::amP 1 e:

•

•

•

•

•

•

MODEL II TRSDOS GENERAL INFORMATION PAGE 13

COPY REPORT/TXT:0 TO REPORT/TXT:3(TXTFILES)
talls TRSDOS to COPY tha fila REPORT/TXT on driva 0 to anothar fila
namad REPORT/TXT on a disk namad TXTFILES, usin9 driva 3 .

•

M O D E L I I T R S D O S

2 / L I B R A R Y C O M M A N D S

•

•

i'IODEL I I T RSDOfJ COMMANDfJ PAGE 15

• (M:2DOS1 8/10/79)

•

•

2 I L.ibrarv Commands

You can enter a library command whenever the TRSDOS READY Prompt is
di::.1~->la··ted .. (Pro9r·~~.m~::- can ,::1.·1 :::.o c;:1.·11 1 j_br·i::J.r···t comm;:ii.nd:: ... S<~f:1 Tf:1chn:i.ci::1.·I
Infor·mation.)

In 9eneral, librarv commar1ds will use memor·v addresses below
X7 2800,; however, the following "high memorv commands 11 use addresses
UP to but not includin9 X,3000,:

APPEND COPY CREATE DUMP KILL LIST
BUILD ERROR VERIFY PURGE SETCOM

General rules for entering commands

Don,t tvPe anv leadin9 blanks in front of the command. For examPle:
T RSDO~, READY

DIH
is an er·ror. Omit the spaces before DIR.

There must be at least one space between the command and anv option
list or comment. For examPle:

DIR{ :l }"
is an error. Insert a space between Rand~-

There can be any number of spaces between .options"
DIR -(SYS , PRT J

has the same effect as:
DI R i SYS, P RT}

When the svntax calls for a delimiter (~Toi, comma or· space), anv
other non-alphanumeric non-brace characters will also serve, unless
the special Punctuation is Par of an option keyword, e.9., the=
sign in several commands.
LIST TEXTFILE (PRT•SLOW}
is equivalent to:

LIST TEXTFILE {PRT, SLOW)

When no ambi9uitv would res,1lt, the braces around the option list
can be c1mitted ..

CREATE FileA NRECS=100,LRL=64
is acceptable~ but

CREATE FileA NRECS=100,LRL•64
is not, since the comment 11 Set UP file area 11 will be taken as an
invalid Parameter.

DIFl bYS
is an error, since SYS is taken as an ir,valid drive specification •
Us-•
DIR {SYS}
i r, s. tea.d"

MODEL. II TRSDOS COMMANDS · PAGE 16

AGAIN
Repeat Last Command

:-------·--·--------:
: AGAIN
:--·c-----·--------------------------,---------•--------------:
This command tells TRSDOS re-execute the most recently entered
command ..

AGAIN
TRSDOS will re-execute whatever command was last entered.

AGAIN is useful after TRSDOS has returned an lnPut/OutPut error
messa9e instead of obevin9 a command~ For example, suppose vou
t··tPe:
f\IL.L OL.DFILE: 1.
and the diskette in drive 1 is wr·ite-Protectedi Then vou~11 9et an

•

:~~;~ 15 .. Put a wr·ite-ena.ti'le tab on the di::.kette and tYPe •

Now TRSDOS will re-execute the command.

SuPPose vou are makin9 multiple backup copies of~ file fr6~ drive 0
to drive 1. Enter· the COPY comand once; for second and-third copies,
use AGAIN~ For example:
COPY DAYSWORK:0 TO DAYSWORK:1
copies the file to.a d~ive 1 diskettea Now Put another _diskette into

·.driv~- 1 and tvPe:
AGAIN
to repe~t the COPY us·in9 the new diskettea

•

•

..

•

MODEL II TRSDOS ·COMMANDS

APPEND
APPand Filas

; ------~~-----~---~--~---------------~-~-----·-~-----------·---------:
APPEND file l TO fi]a-2

fi)@ land fila-2 are file specifications.
, Th• files must have the same tYPe (Fixed or ,

' Variable), the same Record Lan9th, must both be I

' Pro9rams or both be data files IP or Din the ,

' Directory listin91. •
J6TOJ(is a de l imi ter·. A comma or· a space can :

,al ::.c be us.ed.
: ---------.... -·--:;
APPEND coPies the contents of file-1 onto the end of file-2. fi]e-1
is unaffected, while fije-2 is extended to include file-1. The file
tvPes IV or Fl and re~ord lenaths (for fixed len9th"record files)
must match. See CREATE fo~ more information on file tvPes and record
lenaths •

APPEND Wordfila/2 TO Wordfila/1
A COPY of Wordfile/2 is appended to Wordfila/1.

APPEND REGION1/DAT,TOTAL/DAT.9uass
A COPY of REGION1/DAT is appended to TOTAL/DAT, which is Protacted
with the Password guess.

SuPPOSa vou have two data files, PAYROLL/A and PAYAOLL/8.
PAYROLL/A PAYROLL/8

Atkins, W.R. euti~•--•~
Baker·, J.B •••••••••••
Chambers, C.P ••••••••

Lewisi G.E •
Miller, L.O . .•..••••
Peterson, B . .•......
Rodri9uez, F ••.••...

You can combine the two files.·with the command:
APPEND PAYROLL/El TO PAYROLL/A

PAYROLL/A will n,:,w leook like this:

Atkin,;., W.R.
Baker·, "J.B. ,,.,
Chambers, C.P ..••••••
Dodson, M.W
Kickamon, T.Y•
LewisJ G.Eg ••••....•
Millar, L,O •••••••••
Peterson, B ~ ••

MODEL II TRSDOS COMMANDS

Rodri9uez, Fu •••••••

PAYROLL/8 will be unaffected.

PAGE 18

•

-..

•

•

•

MODEL II TRSDOS COMMANDS

ATTRIB
Chan9e a File's Passwords

:---:
ATTRIB file -(ACC=Passwnr-d-1, UPD=Passwor·d-2, PROT=level)--
fi l,a i~. a file ~.p=ecification. -
ACC-pa~sword-1 sets the access word equal to Password-1~

If omitted, access word is unchan9ed.
UPD=Password-2 sets the UPdate word equal to Password-2.

If omitted, update word is unchan9ed.
: PROT=level specifies the Protection level for

acces.s .. If omitted, level is unchan9ed.

:
Level

1\101\!E
EXEC
READ
WRITE
REI\IAME
KILL

De9ree of access granted by access word

No acces.s
E::-::ecute only
Read and e>(ecute
Read, execute and write
Rename, read, execute and write
Kill, Rename, read, execute and write
(gives access word total access)

:--:

PAGE 19

ATTRIB lets YOU chan9e the Passwords to an existin9 file. Passwords
are initially assi9ned when the file is created. At that time, the
update and access words are set to the same value (either the
Password You specified or a blank Password). See Chapter 1 for
details on access and update Passwords ..

E::-::amP 1 es

ATTRIB DATAFILE ACC=JULY14, UPD=MOUSE, PROT=READ
Sets the access Password to JULY14 and the update Password to MOUSE.
Use of the access word will allow only readin9 and executin9 the
file.

ATTRJB PAYROLL/BAS.SECRET ACC=,
Sets the access word to blanks. The Protection level assi9ned to the
access word is left unchan9ed.

ATTRIB OLD/DAT.APPies UPD=,
Sets the update Password to blanks.

ATTRIB PAYROLL/BAS.PW PROT=EXEC
Leaves the access and update words unchan9ed, but chan9es the level
i:1f access ..

ATTRIB DATAFIL..E/1.PRI\I PROT=,
Chan9es the access level to Kill.

SuPPose vou have a data file, PAYROLL, and You want an emPlovee to

MODEL II TRSDOS COMMANDS PAGE 211l

use the file in preparing paychecks. You want the emPlovee to be
able to ~ead the file but not to chan9e it. Then use a command
like:

ATTRlB PAYROLL ACC=PAYDAY, UPD=Av,~cadc,, PROT=READ
N•:•w tell the cl er·k to use th;; Password PAYDAY (which a 11 ows r;;ad
onlv)I while onlv vou know the Password, AvocadoJ which 9rants total
access to the fil•M

SUPPOSE YOU want to temporaril~ stoP. acces~ to the file~ ·Then use
th~ cc,1T1mand:

ATTRIB PAYROLL. Avc,cadc, PROT=NONE
Now the us.e ,:,f the P,u.~.word PAYDAY 9r·ants nc, access to the file. T,:,
r·es.tor·~ the F~r·ia,vious:. de9r·e,,e, of acces.s, use th_e_ .. command:

ATHHB PAYROLL.Av,:,cado PROT•0 READ

•

•

•

•

•

MODEL II TRSDOS COMMANDS

AUTO
Automatic Command after Svstem Start-UP

:--------------------------- -------------------------------:
AUTO command-line

CQmmand-1-ine: i.-s.- a TRSD_OS i;:ommand-- or·=-the--· name
of an e::-::ecut.ab.1e- Pr·o9r·am fi.le;.

: - ' -------·-----. -. - _----- . .·. ---- .-. - .. -----------------' - ... ~

PAGE 21

This command lets You Provide a command to be executed whenever
TRSDOS is started (power-up or reset). You can use it to 9et a
de_sir-:ed-. Pr·o9..r-~m r·.1,.H1nin9. without an··{ _,:iper-ator· a.ction r·e.-~uir-ed_, e:=<CePt
t--..-pin9 in the dat* ar,d :1;:ime.

When vou enter an AUTO command, TRSDOS writes command-line into its
start-up Procedureu The AUTO command does not check for valid
commands; if the command line contains an error, it will be detected
the next time the svstem is started UPg

E>=:amPl es

AUTO DIR (SYS)·
Tells TRSDOS to write the command DIR (SYSJ at the end of its
start-up Procedure. Each time the Svstem is reset or Powered uP, it
will automaticallv execute that command after vou enter the date and
time ..

AUTO BASIC
Tells TRSDOS to load and execute BASIC each time the Svstem is
star'ted UP ..

AUTO FORMS <W=80)" For 8-1/2" wide PaPer·
Tells TRSDOS to reset the Printer width Parameter each time the
svstem is started UP.

AUTO PAYf'<OLL/ CMD
Tells TRSDOS to load and execute PAYROLL/CMD (must be a
machine-lan9ua9e Pro9ram) after each Svstem start-uP.

AUTO DO STARTER
Tells TRSDOS to take automatic command inPut from the file named
STARTER each time the Svstem is started UP. See BUILD and DO.

To erase an automatic command

Tvpe:
AUTO

This tells TRSDOS to delete anv automatic command and reset the
start-up procedure to 9o directly to the TRSDOS READY modeg

lmPcor-tant Nc,te

You cannot over-ride an automatic command. Therefore be sure a

MODEL II TRSDOS COMMANDS PAGE 22

Pr·o9r·am is ful lY debu99ed befi:1r·e makin9 it an o::1.utomatic command. •
F1Jr·ther·m,::.r·e, Pr·i::19r·,B.ms which"';~>~ecuted via the AUTO function should
normally Provide a means of exitin9 to the TRSDOS READY mode.
(Unless the BREAK kev is blocked bv the user Pro9ram, Pressing BREAK
will 9et vou back to TRSDOS.)

Sa.mp 1 ~~ Use

Suppose vou want the TRSDOS to run a certain BASIC pro9ram, MENU,
each time it is started UP. That wav, an operator can turn on the
Computer and 9et 9oin9 without havin9 to enter anv TRSDOS commands.

Then use the command:
AUTO BASIC MENU -.. F: 2
to Prepare the Svstem to run the BASIC Pro9ram each time it starts
UP. (See BASIC Heter-ence Manual -ft,r· detai 1 s- Cir, l oadin9 BASIC'.)

•

•

•

•

•

MODEL II TRSDOS COMMANDS

BUILD
Create an Automatic Command InPut File

:---:
BUILD file

file is a file specification which cannot include
ar1 e>::ten~. ion.

:--:

PAGE 23

l'his command lets vou create a an automatic command inPut fife which
can be executed via the DO command~ The file must contain data that
would normallv be tvPed in from the kevboard.

BUILD files are Primarily intended for Passing command lines to
TRSDOS Just as if thev'd been tvPed in at the TRSDOS READY level.

BUILDin9 New Files

When the file vou specify does not exist~ BUILD creates the file and
immediately Prompts vou to be9in insertin9 lines .. Each time YOU
complete a line, Press <ENTER> .. BUILD will 9ive vou another chance
to re-do the line or keep it .. Press <ESC> to erase and re-do the
line; <ENTER> to store it and start the next line ..

While tvPin9 in a line, You can use<- and-> to Position the cursor
for corrections. <BACKSPACE> also works as usual .. Be sure the cursor
is at the end of the desired line before You Press <ENTER>.

To end the BUIL.D file, simPlY Press <ENTER> at the be9innin9 of the
line, i.e .. , when the mE•:£.:::.ft9e:

TYPE IN UP TO 80 CHARS
..

Note: Pressing (BREAK> will also end the file. Onlv those lines
that have been tla99ed like this:

*** LINE STORED IN FILE***
wi 11 be ,c.aved.

Editing Existin9 BUILD-Files

When You specify an existing file in the BUILD command, TRSDOS
assumes YOU want to edit that file. Before startin9 the edit, it
copies the file into a new file with the same name but with the
extension /OLD .. That wav, YOU will have a backup COPY of the file as
it was before bein9 edited •

Note: Editin9 an existin9 BUILD-file re9uires that vou have
write-access to the file .. That is, if the access Password .has a
Protection level which does not allow writin9, then You must SUPPlY
the update Password.

MODEL II TRSDOS COMMANDS PAGE 24

Ei<amP 1 e : •
Suppose the file STARTER already exists, and YOU tYPe the command•

BUILD STARTER
TRSDOS u.<ill fir·s.t copy STARTER into a new fil<> STARTER/OLD (if
STARTER/OLD alr·eadY e:,iis.ts, Pl'<'!Vi-ous. c,,ntent,. ar·e lost). Th-,n it
will 1-,t YDU begin editin9 the file. As YOU edit the file, the
updated lines will be written into STARTER.

BUILD will disPlaY the existin9 contents of the file, on<'! line at a
time. Beneath the line is an option list:

K (keepi, D (delete), I (ins-er·t), R (r•ep'lace), !~ (quit} ? ••

Typ-, the fir-st letter of the desired oPtion and Press (ENTER>s

l<EEP OPTION: Cc,pies. th;;- 1 in.e aie.-iie. int,, the new file·, ar,d· dis,Pla·,,s
the next line for editin9.

DELETE OPTION• Deletes th<i< 1 ine bv not c,:,pyi-r,9 it into the .new file,
and disPlavs the next line for- -,ditin9.

INSERT OPTION• Allows You to ins-,rt lines AHEAD of th-, line bein9
disPJaye,j. U,c.ing this ,:,pt ion is ·like -,nter-in9 lines. into a. new fi H,
as describe·d ab.ove.

After· YC11J Pr·ess. <ENTER>'}. TRSDOS wi 11-. 9ive ''t'CtJJ a chance tc, er·.as-.e· and
r•~;,·~~;~.tar·t tht: inse, ... t :1 irie•, -or •ti:i st,:,r<:t 1:he insert l·ine~ Pr.es~.- <ESC>
to erase, <ENTER> to store it~ You can then insert another line.

To stop insertin9, Press <ENTER> at the beStnnin9 of tha lin-,.
TRSDOS will ·then disPlBY th;;- n;;-xt line and. the option list.

REPLACE OPTION• Di'!l etes, the disPlaYed 1 ine and 1 ets yc,u ins·er·t
r-ePlacemant lines. Entarin9 r;;-Placement lines is llk;;- anterin9 lina~
with the inie.ert oPtion. Press <ENTER> at the beginning af. • line to
stop insertin9 •. TRSDOS will disPlaY the next line and the option
1 i st,.

<~UIT OPTION: Ends. the ed·itin9 session. All r·eniairdr,9 1 ine·s- .will be
,:,;pied into th-, n-,w file aie.--iie.. Befor-;;, clos.in9 the fi I e, .TRSDOS wi 11
a~.k if ."1 .. 0U want ti:, add new 1 ine:'::'. t1:i t-he• •2:r'ld,, (I·f yi;:,iu· s-imPl·v·· wa.nt tc,
add to a file but make no other chan9es, tYPE Q at the ·be9innin9 of·
the edit session.)

At end of file

Whenever- TRSDOS reaches th;;- end of the file, it will ask ~f YOIJ want
i:o add new l ir,;,s at the end. TvPe Y <ENTER} to add,, N <ENTER> -to end
th•· editin9 session.

•

Add inst l irv2s. at the ;;,r.,:I c,f a file is Just like 1Js-in9 the ir,s.;;-rt 1 ir,e •
oPtion descr·ibed abc.v<'!:. TYPB <ENTER> at th<'!: b.<!!9innin'il ,:.f a 1 i'r,e to
stop addin9 and cl o;:.e, ths:<.- fi 1 e .. ·

·ro ~ecover a BUILD file's p~evious contents

•

•

•

i"IODEL II TRSDOS COMM,\NDS PAGE 25

There are a couPle of cases in which vou may need to do this~ Let's
assume YO~i are editing a file named STARTER.
ln After endin9 the edit session, vou realize that YOU have made a~­
er-r-c-r·, and ··{ou want to r·ec1::iv1::r· the pr,avious v~rsion o:f, ttie :f·i·l:e ..

2. You e.ci:i-1j~r,tal lY P-r·f:.t~.s. <BREAK> arid end th-B" e-d-ii: s.,.;,s.s.ion-; 1:irll-'•f'

those lines that have been fla99ed like this:
•HH LINE STORED IN FILE ·~+,;

wi 11 b-E-· -~.aVBfJ in ·t!Yt~ .n1?-\.tJ ffl i~ :narr,:-ed ST1~RTERn

~r he ._..Pr·e-vj,_·i:;ius f-i 1.t• -con-terd~. ar·B ni:)w ,:'.!:,tor·ed i r1 STARTEF~/OL:D .. 1:f ··{cuJ
want :to r~~·-·ed·it thi·s-.· fi l-,~f ··{·OU mu~.t CciPY .i-t ·,fr· .R,enam.e it tr:, a. ·f.i-l~·
name without an extension. For example, Y&u ~i9ht -U$~ these
i:c,rnma.nds::

COPY STARTER/OLD TO STARTER {ABSf
Now vou can edit the Previous file,s contents. Tvpe:

BUILD STARTER
To start editin9 •

MODEL.. II TF<SDOS COMMANDS PAGE 26

CLEAR
Clear User Memorv

:---:
, CLEAR
:---------·--:
This command 9ets vou off to a fresh start. It zeroes user memorv
(loads bir1arv zero into each memory address above X7 27FF 7

). It also
returns the Svstem to the state it is in when the first TRSDOS READY
messa9e appears: initializes the input/output drivers, un-protects
all memorv and resets the stack.

E:,.,:amPle

CL.EAR

•

•

•

•

•

•

MODEL II TRSDOS COMMANDS

CLOCf'(
Turn an Clack-DisPlav

= -----------------·---------·---·------------------·--·----------::
1 CLOCK (~.witch) :

s.witch is one of the c,Ptic,ns, ON or· OFF. -If switch is not 9iven, ON is assumed.
: --- ... ~ ... ~-------•-----------~~•----------- .----•--•-•M--•-•-~ ---•-•----«---::

PAGE 27

This ,:,,mmand cantr·als the real-time clc«:k dis.play in the upper ri<Jht
earner of the Video DisPlav. When it is on, the 24-hour time will be
disPlavad and UPdatad once each second, re9ardlass of what Pro9ram
is. executin9.

TRSDOS starts uP with the clock off.

Note: The real-time clack is alwavs runnin9, re9ardless of whether
the clock-displav is on or off.

Examples

CLOCI'\
Turns an the clock-disPlav •

CLOCK OFF
Turns off the clock-display .

MODEL II TRSDOS COMMANDS PAGE 28

CLS
Clear- the Scr·een

: CLS :
:------------------·--------------··-----------~---··.---------:
This- comri,and cl·ear-:'::- the Vide·o D1sPla··{,. U~-e it to er•ase •infor-tria.tion
that vou don't want others to see, for example, file specifications
whic·h· i'ntl~ude ·pas·swords.

E:,-,:amP le

CLS

SamPl e us~?

CREATE PERSONNL/BAS.secu~e
CLS

NGRANS=200

•

•

•

•

•

•

MODEL II TRSDOS COMMANDS

COPY
Ci:1p··t a F:i.1 e

, COPY fi li; 1 TO file :.:~ ~ABSj
z file 1 and .2., ar·e file ~-Pecifica.ti1::in'.!.,, Fi::ir· s.in9le·-

drive copies, the file names MUST BE DIFFERENT. :
.JfTO,l:/ is. ;i, del imitw1t· .. A ci::1mma or· sPac£> can also be used .. :
ABS is an OPtion~l Pa~amete~ telling TRSDOS to COPY =

file 1 even if file 2 al~eadv exists. The Pr·evious
contents of file 2 will be lost"

PAGE 29

This command copies file 1 into the new file defined bv file 2~ If a
disk name is included in eitheP file specification, TRSDOS will
ensure that the aPP~OP~iate diskette is inserted befor~ making the
COPY. This allows vou to COFY a file f~om one diskette to anothe~,
usinY A SINGLE DRIVE if necessary.

When vou do not add the ABS (11 absolutelv 0 > Pa~ameter, TRSDOS will
NOT overwrite an existin9 file that matches the specification file
2~ Instead it will 9ive vou an err·or· messa9ea Use the ABS o~tion to
overwrite Cdestrov) an existing file~

Nopmallv, COPY uses n,emory belou, X7 3000'; howeverj when coPYin9 f~om
one diskette to another in a SINGLE drive, it will use memorv UP to
the start of P~otected memorY (see *Memorv Requirerr1ents of
TRSDOS").

The disk name n1ust alwavs be Preceded by a drive specification;
otherwise it will be i9noredff

For sin9le-drive copies from one disk to another, both disk names
and drive specifications must be Provided.

COPY OL.DFILE/8AS TO NEWFILE/BAE,
Cc,pies OLDFILE/BAS intc, a new f i 1.;;, 1-.r,mi'ed NEl,!FILE/BAf'J. THSDOS wi l ·1
s-~e,c1sch thr·ou9h al ·1 dr·ive:=. f(1r OLDFILE/E'~,AS, and wi 11 COPY it onto thii:!"
first diskette which is not write-Protected.

COPY NAMEFILE/TXT:0CDEPTCI TO FILEA/TXT:0CDEPTAI
This command sPecifies a one-drive coPY from a diskette named DEPTC
to another diskette named DEPTA. TRBDOS will Provide the necessary
PromPting to accomPlish the COPY~ Since it,s a one-drive COPY, file
r1an1es must be diffeP&nt~

COPY FILE/A TO FIL..E/B' 1 (DOUBLEi
This command copies FILE/A to FJLE/B. TRSDOS will search all drives
for FILE/A, and will r~quire vou to have or insert a diskette named
DOUBLE in drive 1.

MODEL II TRSDOS C(lMMANDS PAGE 30

COPY NEl,lFILE TO OLDFIL.E -(ABS} •
P,;,r·f,:,r·me. the cc•PY avan if OLDFILE alr·<S<ad·r <S<>ds.t$., in which ca!E.\S' its
P~evious contents are lost~

Whanavar a file is uFdatad, use COPY to make a backup file on
another diskette. You can also use COPY to ~e$tructure a file for
faster access. Be sure the destination diskette is alpeadv less
se9mented than th• source diskette; otherwise the new file could be
mor-e .s,e9rr,ented than the old one. (S~e FREE for- infor·mation on file
sa\Jrr«:H'ltation.)

To rename a file on the same diskette, use RENAME, not COPY.

•

•

•

•

•

MODEL II TRSDOS COMMANDS

(t12 D0S2A 8/6/ 79)

CREATE
Create a Preallocated File

: --•-------------•----------------•----••----••••---~-----•-------•-M_H ___ ,HH•--- 1'

CREATE file -tNGRANS=nl, NRECS=n2, LRL.=n3, TYPE=letter·Y
: file i'.:. a fi'it? sPecific,3.tion~
: NGRANS=ni indicates how manY 9ran1Jles to allocate. •
, If NGRANS is ommitted, the number of 9ranules ,
: al J ocat<'i/d i;. deter·rnirred bY NRECS and LRL. •
, NRECS=n2 indicates tnlW many r-ecor·d~- to al 1 ow for. ,
: If NRECS is omitted, NGRANS determines the size of,
, the file. When NRECS is given, LAL must also be ,

b-e 9iven. :
, LRL=n3 indicates th• r•cord 1•n9th (Fix•d-len9th ,

' r~•= •=tr-d~. i::,r.lv) ... n3 must be in the r·art9~ <1,256>.. :
If LRL is omitted, LRL.=256 is used. When LRL is ,
9iven, NRECS must also be 9iven.

TYPE=letter specifies the record tYPel letter e9uals
F 1Fixed-lerr9th records) or V 1Variable-len9th
records). If TYPE is omitted, TYPE•F is used.

N,:,te: ('NGRAN~r} and {NREC:S, LRL) ar·e mut•Ja 11-.,,
-Er::{cl us.iv~ ..

:--:

PAGE 31

This command lets YOU create a file and Pre-allocate (sat aside)
,e.pac,a f,;,r· it,. fut1Jr•e cont•nts.. This. is. differ·ent frc,m th• default
lrrormal) TRSDOS Procedure, in which &Pace is allocated to a file
dynamically, i.e, as nacessarv WHEN DATA IS WRITTEN INTO THE FILE.

With Preallocat€'.d files, urrn;ced sPaCE'. at the and of file isc. NOT
deallocated Crecovaradl when the file is Closed. With dYnamicallY
allocated files, on the other hand, unused space at the end of the
file IS recovered when th • file is Closed.

N~•te• With Pr·-<?-allocated 1'iles, TRSDOS will allocate e;,,tr·a ,.Pac;;
when vou exceed the Pre-allocated amount durin9 a write operation ..

You maY want to use CREATE to Prepare a file which will contain•
known amount of data. This will usuallv speed UP file write
operations, since TRSDOS won~t have to do Pe~iodic allocations
durin9 the write oParatiorrs. Fil€'. reading will als,;, be faster, since
pr;;-allocated files are 1€'.ss dispersed orr the diskatte--raquirin9
less motion of the read/write mechanism to locate the ~ecords~

Examples.

CREATE DATAFILE/BAS NREC:8=300, LRL=256
Creates a file rramad DATAFILE/BAS, and allocates space for 300
256-bvte records.

CREATE TEXT/1 NGRAl\!8=100, TYPE=V

MODEL II TRSDOS COMMANDS PAGE 32

Creates a file named 'TEXT/1, and allocates
will contain variable-len9th records.

100 9ranules .. The file •

CREATE NAMES/TXT.IRIS NRECS=500, LRL=30
Creates a file named NAMES/TXT Protected bv the Password IRIS. The
file will be lar9e enough to contain 500 records, each 30 bytes
1 on9 ..

Determinin9 the size of the file

You can allocate sPace accordin9 to number of 9ranules or number of
records. (A granule contains 1280 bvtes; a record contains from 1 to
256 b·y·tes-., dePendin9 i:,n L.RL.)

The 9ranule is the unit of allocation in TRSDOS; if You ask for 30
9ranules, that 1 s exactly how much space the file will 9et.

If, on the other hand, vou specify the number of records, TRSDOS
will give vou the NUMBER OF GRANULES which are re9uired to CONTAIN
that manY records. For example, if vou sPecifv 100 records and a
record len9th of 40, You 1 re askin9 for a total of 100 * 40 ~ 4000
bytes. Since TRSDOS allocates spaces in units of 9ranules (1280
bvtes), You'll actually 9et 4 9ranules--containin9 5120 bytes.

Record Length (Fixed-Length Files Onlvl

A record is the quantitv of data TRSDOS Processes for You during
disk operations .. The r-ecord len9th can be anv value from 1 to 256.

FileTYPe

TRSDOS allows two types of files: Fixed-Len9th Record (FLR) files
and Variable-Length Record CVLRl files. With FLR files, the record
1en9th (from 1 to 256) is set when the file is created, and it
cannot be chan9ed .. With VLR files, the len9th of each record is
independent of all other records in the file .. For example, record 1
mi9ht have a len9th of 70; record 2, 33; record 3, 225; etc ..
Variable len9th records consist of a len9th bvte followed by the
data, and can contain UP to 256 bvtes INCLUDING the len9th bvte.

For further explanation of file structure, allocation and tYPes, see
Technical In1=or·matii:,n.

To CREATE a file to be used by BASIC

1. Decide how manv records the file will contain.
(This is Just an estimate. If the file exceeds this
number·, it will automaticall·-,-- be e::-::tended ..)

2. If it is a Di~ect access file, determine the
optimum record len9th (from 1 to 256) .. If it is a
s.e·:::iuential a,:i::ess file, the r·e,::or·d len9th must e-,ual 1 ..

3. Use a CREATE command like this:
CHEI\TE 'l"i le {Nl:lECfr:=number·, Ll'!L 00 ·1_gngt1-,}

•

•

•

•

•

MODEL 11 TRSDOS COMMANDS

Suppose You are 9oin9 to store personnel information on 251/l
amploYaas, and each data record will look like this:

Nams, (UP to 25 1 etter·s)
Social Security Number 111 characters)
Job DescriPtion IUP to 92 characters)

Then Your records will need to ba 25+11+92•128 bytes lon9.

You could create an aPProPriate file with the command:
CREATE PERSONNL/TXT NRECS,,,251/l, LRL=128

PAGE 33

Once created, this. Preallocated file will allow faster writin9 than
would a dvnamicallv allocated file, since TRDOS won"t have to stop
writin9 Periodically to allocate more $P&ce (unless YOU exceed the
Pre-allocated amount) •

MODEL II TRSDOS COMMANDS

DATE
Reset or· Get Todav's Date

:-----·---:
DATE -{mm/dd/yyy·-c}-

lli!!!. i.s-. a two-di9it month S-Pecificatior,
dd is a two-di9it da.·y· ... "of"-month sPecific;a.tion
-.,.--. ..-y·•t is a f our-~d i git --... ear· s-F·e c if i cat i i:1r,
If mm/dd/yyy·..-· ar·e 9iven, TRSDOS resets the

dat:0. If _!!!!!1/dd/yyyy is. c,mit:t:0d, TRSDOS
disPlavs the current date and time.

'

:------------------------·----------------------------------:

PAGE 34

This command lets You reset the date or disPlav the date and timeu

The operator sets the date initially when TRSDOS is started UPu

After that, TRSDOS updates the time and date automaticallv, usin9
its built-in clock and calendar.
You can enter any four-di9it Year after 1599.

When YOU request the date, TRSDOS disPlaYs it in this format:

•

THU JUL 19 1979 21illil -- 14.15.31
for· Thur·s.daY, July 19, 1979, th0 200th day ,:,f t:h0 Y0a.r·, 2:15:31 Pm. •

Note: If the time Passes 23.59.59, TRSDOS does not start over at
e.10.00.00. Ins.t:0ad, it cc,ntinu0s. with ;:4.00.00. l-low0v0r·, t:h0 n0>,:t
time you use the TIME or DA'TE command, the time will be converted to
its cor-rect 24-hour value, and tt,e date will be updated. If you let
the clock run Past 59.59.59, it will recycle to 00.00.00, and the
date will not be updated to include the 60-hour Period.

DATE
Displays the current date and time.

DATE 07/18/1979
Resets the date to Julv 18, 1979, and disPlaYs the new date
infor·mation ..

Sa.mp le U~-E ..

In addition to resetting and 9ettin9 the current date, this command
can be used to Provide complete date information on any date.

For example, the command~
DATE 12/lil7/1'i''>1

tells vou that December 7, 1941 fell on a Sundav, the 341st day of
the Year. It also resets the current date.

•

•

•

•

MODEL I I TRSDOS COMMANDS

DEBUG
Star·t D•bu99•r·

:--·-·-----------·
: DEBUG

:

'

{2!'.Wi tch}
switch is one of the following Parameters=

ON turns on the debu99er.
OFF turns off th• debu99•r.

If switch is omitted and debu99er is off,
TRSDOS tells. YOU ~-o.

If switch is omitted and debugger is on,
TRSDOS enters the debug monitor.

PAGE ~~5

'
'

This. command se,t;:. UP the di?bu9 monitor·, u,hich .::,.1 lou.is Yi'.)l.! to ent"c.,r·,;:
test, and debu9 machine-lan9ua9~ pro9rams~ It also includes an
UPload function to allo~J transmission of data from anott1e~ device to
the Model II, via the built-in serial interface (Channel Bl.

DEBUG loads into the hi9h memory area sometimes reserved by TRSDOS
for special PP09rammin9 (see TRSDOS Memorv Map). While DEBUG is on,
TRSDOS will automatica.l l·--{ Pr·cd:ect this ar-0a from bein9 ovf .. r·laid bv
BASIC or other user Pro9rams~ To use DE™JG from BASIC, vou must tt1rn
DEBUG on t,;;.t'c,r·" YOIJ ste.rt BASIC,

While DEBUG is on, every time vou attempt to load and execute a user
Pro9ram, vou will enter· the debug monitor. In this mode, vou can
enter anv of a special set of sin9le-kev commands for studving how
Your p~o9ram is workin9.

DEBUG can on1Y be used on Pro9rams in the user area (X'2800, to
TOP).

E>t:amPl t•s

DEBUG
If DEBUG is off1 this command te1ls vou so. If it is on, this
command enters the debug monitor~

DEBUG OFF
lu~~s off DEBUG and un-Pr·otects hi9h n1emor·Y.

m:::BUG ON
Tur·ris-. r:lri DEBUG: i~fl!.,, load::- the debu99er- ir1t1:i hiSJh memc,r··-r·, Pr-r.:d:t>ct:::.
hi9h memorv, and sets UP a »scroll window•--a block of lines that
will be scrolled~ The scro11 window will consi$t of the bottom 11
lines on the disPlav. 'The toP 13 lines will he used to contain the
debug monitor dis~lav~

MODEL II TRSDOS COMMANDS PAGE 36

To enter the debu9 monitor

Type:
DEBUG ON
DEBUG

While DEBUG is on, vou can also enter the debu9 monitor simPlY by
tYPin9 file specification of a user Pro9ram .. TRSDOS will load the
Pro9ram and transfer control to the debu99er. The transfer address
for the Pro9ram will be in the PC re9ister diiPlav.

St,::1.r·t ;::1.ddr· .. of thi::.
16-bvte POUJ of RAM

!3HACf'(MODEL

00 1Z10 1Z10 01ZI
lillll LJ-f.:> 00 00 00

IZ10
!illll

-1ex contents of
t·ach b·-{te in r·ow

PFWGHAM

1a0 0i/) I/JS C3 6A
!Zllll I/Jill 31, AC iillll

C:l
ll)li)

ASCII characters
11

..
11 for- n.:,n-·

di :::.r-::-1 ,:tY char-~-"

6A ill Ii) Ill !il ~:.7
lil0 ~)~3 '.'.).I.~ .I.~ ~j F

. . " . . .

•

. " .j •. J .. • w

' . " . .BTE
2B90 Lf.I) iZJ(1 2E 2E:: ;,:E 2C ,,9 1/Jli) 44. 24 2B 33 31/J 30 31ZJ 2E 1'1. " . . ' I.D$(3000.
2Bl\lZJ ;,1il 31/l 3fi) 311) :31 :;~ii li)li) 20 :3B :;ilil ,, 1 '.:5:3 '.'!0 f.~9 33 24 IJC1001) . B
::':BP.Iii 00 20 ,,.9 :u 2LJ- 01ZI 01ZI 00 01/J 00 11)1/J 1Z10 IZIIZ! 00 01?) 1Z10 . I 3$. . . .
2BC0 00 00 li)li) li)li) 011 00 0C1 00 00 00 00 !il!il -~0 I/JIil 01/J I/J0 " " " . . " . . .
;::BDiZI 00 1Z11Z1 iZlli) 00 IZJIZI li)IZI 0,1 li)li) 00 00 00 I/J0 11)1i) li)I/J 011) 01/J
2BE0 00 li)li) 0,1 @i) cm m1 lii!il lil0 00 00 1/J!il I/JIil I/JIil 00 00 00 " . .

F1 C SP BZl-!P AF BC DE "\" "'~'
00110 Ill liJI/JI/J

Fl,,_,i,. Pr 1:iCJi ,:im 31.t11:~

HL IX IY AF' BC' DE' HL.,
Ill lil !il liJ liJ Ill !il Ii) 0(~1/J0 I/J,~01/J 00~)0 001~0 0001/J

etc ~
Co uni:: E• r· Pi:1int,,.~r- (P,=P/V)

the command Prompt, meaning that vou can enter- one of the
sin9le-kev commands .. Press <H> (for "help'') to disPlaY a 11 menu 11 or
list of debu99er commands. To enter one of the commands~ Press the
letter which is caPitalized in the command menun For examPle, to
enter the memory command (11 raM"), Press <M>.

Most commands will Prompt vou to enter additional information or
subcommands .. While entering commands and subcommands, the following
ktt:!YS ,3.r·e usef.•.Jl:
<ESC> Retur-ns to the? Prompt and cancels the command

··{ou' r·e in ..
<BACKSPACE> BacksP"-c•s the cursor and er"-s•s Previous

char·acter· ..
<-~
-->

<Fl>
<.TAB;,.

Cursor back without erasin9.
Cursor forward withou9 erasin9.
In certain subcommands, homes the cursor~
In certain subcommands, tabs the cursor.

Command Description

AS I3$
.
. . . . :• . . . "
" " "

•

•

•

MODEL II TRSDOS COMMANDS PAGE 37

Br·,:ak

Press to set a breakpoint in vour Program. When execution
reaches a breakpoint, control returns to the debu9 monitor, with the
Pro9ram counter Pointing to the breakpoint address. To continue from
that Point, Press <C>. The ori9inal instruction will be
e:,,:ecut,:d-·-BUT THE BREAKPOINT WILL NOT BE REMOVED. It wi 11 s.ti 11 be
there the next time that address is reached.

Note: Place breakpoints at the be9innin9 bvte of an OPcode--NEVER in
the middle of an instruction.

Press to enter the Break command. TRSDOS Prompts vou to enter
the breakpoint number. UP to ei9ht breakpoints are allowed, so tvPe
in a number from 1 to 8. Next TRSDOS Prompts vou to enter the new
address for that breakpoint. If the breakpoint has Previously been
set, TRSDOS disPlaYs the old breakPoint address, and the ori9inal
instruction that 9oes in that address.

Note: While a breakPoint is in Place, a D7 is disPlaved in the
memory disPlav for the breakpoint address.

For e::-::amPle:

? B #=1 A=2800
Puts a breakpoint (#1) at address X'2800'. The memory display for
X'2800' will show a D7.

/
RADIO SHACf{ ~L. I I DEBUG PROGRAM

2800 ,:jrz5se.""2E D6 4~, F3 43 DE 42 96 44 C9 42 29 5E 95
2810
2820

60 ,'\1 3A 28 -'+E 17 4F Z9
50 33 50 FD 60 00 61 03
60 E7 60 EA 60 D6 43 0A

'+1 7A
61 6D

4E 88 LfF
64 C0 64

.t..C.C.B.D.BJ ••
''1 4F 1E ·· . • :(N.OlAzN.0.0.
D3 64 E4 P3P. ·· . .. a .. amd .. d .. d ..

•

,,.4 :.36 44 83 44 36 SC 2F ... ··. ·• . • C.D6D.D6,j,/ . .

To delete a sin9le breakpoint without affecting any others, Press
<ENTER> instead of Providin9 a new address for the breakpoint .. To
delete all br·eakPoints, Pres-.S:. <E> for- 11 empt··..- breakpoint table".

Continue

Press <C> to enter this command. It resumes execution of vour
Pro9ram at the address Pointed to bv PC. Use it after the debu99er
has stoPPed at a breakpoint .. The ori9inal instruction at the
breakpoint address will be executed, but the breakPoint will remain
in Pla,:e ..

MODEL I I TRSDOf3 COMMANDS PAGE 38

Dec ima 1 Fi:,r·ma t
=: ::::=:::::::::::=.:::::=::;::::=::=::::::=:::::::

Press <D> to enter this command. It disPlavs all addresses in
decimal form. However, the contents of all re9isters and memory
addr·esse~. a.r·E• s-ti 11 dis.pl,a·-.--ed ir, he~-::adi:-cimal .. In the decimal dis-Pl a··{
format, You must enter all addresses as five-di9it decimal numbers.

EmPtv Breakpoint Table
===:::::."::::::::::::::::::::::~::::::::::::::::::::::::~·.::::::::::::::::::::::::::::=::

Press <E> to emPtv the breakpoint table. All breakpointed
instructions will be restored.

Find He:": Str-ir,9
···- ··- -·- ··- ···- ·-- :.::: .. .:. ::::: :::: .:::: :::: ::::: :::: ::::

Press <F> to start this command. It will search in memory for a
strin9 UP to 20 bvtes lon9. You must enter the search strin9 in
hexadecimal format. Press <ENTER> when vou have tvPed in the entire
strin9a The debug monitor will disPlav the first occurrence of the
~-tr·in9. It it is. not in the sear·ch ar·ea, the cur·r·ent memr:ir· .. { dis.pla·•f
i'.=- uncha.n9ed.

F ,:i r· e::-::amP 1 e:
? F 8°0 2800 E=L,0[10 D=°C:l01ZJ70

Searches memorv from X'2800' throu9h X'4000' for the three-bvte
~,exadecimal string X'C30070'.

•

•

•

•

•

•

MODEL II TRSDOS

1-\ -t._f F ort11~t -~-----~----
COMMANDS PAGE 39

Press <X> to restore the DisPlav to hexadecimal format .. In this
mode, all addresses must be entered as four-di9it hexadecimal
number·s ...

Jump

TYPe <J> to enter this command. The debu99er will Prompt vou to tvPe
in the address to Jump to. CJumPin9 to a breakpointed instruction
wi 11 caus.e an immediate r-etur·n to the debug mordt1:ir-.)

For· e}::amP le:
? J A•2800

starts execution at X7 2800 7
•

Load (COPY memorv to memorv)

TvPe <L> to enter this command. It moves a block of memorv. The
debu99er will PrornPt YOU to tYPe in the start IS=I and END IE•I
addresses of the block to be copied, and the destination address
(T=> for the first bvte moved.

The move is incremental: the first bvte is moved to the fir·st
destination address, then the second to the second destination
address, etc.,

E>;:arnPl es:
? L 8•2800 E=28F0 T<:1000

Copies addresses from X'2800' to X'28F0' into memory from X1 3000' to
X' :30Flll'.

You can use this command to fill memory with a
Puttin9 the dft.'.:-ir·ed value in addr,es:.s L!.!!...!!.!l' and
this.:

? L S=J:!..!lI!.D__ E=;::::::<::-::x T:::::nnnn+1

~-Pec1t1c va.l•Je, by
usin9 a command like

Thi~. will cop··{ the value in !.l!l.[!..[!_ into ever-Y location fr·om nnnn+1 to
xxxx. For example, if 2800 contains a X'20', then the command:

? L. S=2800 E=3000 T=2801
fills memory from 2801 to 3000 with X 1 20 1

•

Debug Off
-H--•-----H•­•-•---M--MM--M•-
TYPe <O> to exit the debu9 monitor and turn off DEBUG .. All
br-eakPoints set bY the B command will be removed from your Pro9ram,
AND EXECUTION WILL CONTINUE AT THE ADDRESS SHOWN IN PC.

Pr·in-1: Dis.play
=-~==::::::::::::======---
Type <P> to send a COPY of the DisPlaY to the Printeru Printer must
have been initialized during TRSDOS startup or by the FORMS
command ..

MODEL. II TRSDOS COMMANDS PAGE 40

Examine and Chan9e Memory
===================------
TvPe <M> to enter this command. The debu99er will Prompt vou to tvPe
in the startin9 address of memorv to be examinedff As soon as vou
t·y·p-e in the complete addr-e::.s, the memi:•r·Y di:-:.Pla·.,-· wi 11 show the
128-bvte area startin9 with that address. While the A=."·· Prompt is
Present, vou can scroll throu9h memorv 16 bvtes at a time bv
Pressing <ENTER>.

TO MODIFY ANY MEMORY IN THE DISPLAY AREA, Press <Fl> while the
A= •..• is diPlaved. The cursor will move UP into the memorv dislav
ar-ea ..

While in the memorv disPlav ar·ea, use the cursor control kevs, UP

arrow, down arrow, <-and->, and <Fl> to Position the cursor to the
value vou want to chan9e. The 128-bvte block of memorv is disPlaved
in hexadecimal and ASCII format, and vou can modify memorv bv
enterin9 hex values or ASCII values, depending on the Position of
t ht? c 1.J r· s. or· ..

To switch from hexadecimal to ASCII entry or vice versa, Press the
<I> kf:!'•(.,

•

When the cursor is in the hexadecimal area, enter hexadecimal
values. The debu99er will update the memory disPlaY as YOU tYPe in
each nibble (he>(adecimal chi::J.r·acter·, half .a. byte). •

When the cursor is in the ASCII area, enter ASCII characters. Press
<I> to return to hexadecimal entr·Y.

TO CANCEL ALL CHANGES in memor··,··, Pr·es.s. <ESC>. TO EFFECT ALL. CHANGES,
r-r·-..~s-s <F2>.

Press <R> to enter this
letter indicating which
A for AF B for BC
X for IX Y for IV
F for AF 1 C for BC 1

command. The R =>
re9ister-Pair You

D for· DE

E for· DE'

Pr· 1:imPt a PPear s-.
want ti:1 chan9e:
H for· HL.

L f1:ir- HL 1

T·y·pe in a

The cursor will move over to the first bvte of the re9ister Pair.
While in the re9ister modify mode, use the cursor control kevs, <­
and-> to move over one nibble at a time .. Use <TAB> to advance to
the next re9ister Pair.

TO CANCEL. CHANGES in re9is.tar contents, Press <ESC>. TO EFFECT
CHANGES made, Press <F2>.

S··ts. tem

Press <S> to return to the TRSDOS READY mode. The debu99ar is still
on; when You load and execute a P~o9ram, You will enter the debu99er

•

MODEL II TFlSDOS COMMANDS PAGE 41

• a9a.in ..

•

•

UPl oa.d

Press <U> to enter the se~ial inPut mode, in which the Computer
accepts serial input from another device (Modal II or other
computer·., etc ..) ..

Set UP the sending device <ea9a, another Model II or other computer)
to transmit to the Model II via the serial interface~ Channel Bon
back Panel. Tr·a.r,2.mis.s.ions. muz.t be FlB--232C star,dar·d, with the
fo11owin9 characteristics:

1211ll1l ba.ud
8-bi t U)t:ir-ds
No F:.-:a. r· i t ··i"
1 stoP bit between words ..

The transmitting Pro9ram must send the data in uintel (R) PaPer Tape
H~x For·m.a.t 11

., d<S<'.:P.:ribed be·1 ow ..

Each ~Yte of data is sent as a Pair of hexadecimal ASCII-·coded
cha.r·acters.;

1) hi9h nibbh, (mi::1 s·. t ;r.i9ni fice.nt four· bits), ~-e-nt a::. fir·~.t
bYte of Pair· ..

2) 1 0") nibb1~ (1 east ~.i~jrdfic.a.nt four· bit;.), ~.ent a::. :'.econd
tr,·tE> of Pair"~

~or- example, the value X'F7' is sent as two bvtes, »Fn CX'46')
f c, 1 ·1 ,:,wed bY » 7" (X ·, 37 ·,) "

Because only »:u and ASCII coded hexadecimal numbers are sent, data
is always in the ~an9e <X'30',X'3A'> or <X~41',X'46'>~ Values
outside this ~an9e will terminate reception and Produce an e~~or
me:::.::;.,3.9;;?,,

MODEL II TRSDOS COMMANDS

Record Format

Records must be sent as follows:
~------------.------------·------:-------------------------:
: Character
: Number- Conter1ts Comments
:------------:--------·------------:------------------------:

1 II : tt Svnc-character to
indicate be9innin9
of record.

:------------:-·------------------:------------------------:
2 : High nibble of

: record len9th (N):
:------------:------------------:

3 : Low nibble of
: record len9th IN):

This 2-bvte se9uence
9ives the number of
bvte PAIRS in this
recorda Zero means
256 bvte Pairs follow.:

:------------:------------------:------------------------:
4 : Hi9h nibble of

: msb of load addr.:
-------·------:-------------------:

5 : Low nibble of
: msb of load addr~=

:-----------•-:------------------:
6 : Hi9h nibble of

lsb of load addr.:
:-------------:------------·------:

7 : Low nibble of
1sb of load addr.:

This 4-bvte sequence
9ives address where
the data is to start
loadin9. Address
sPecifiied must be
in the user area
<X'2800',TOP>.

:------------=·-------------------:----------··-·--------------:
8 Hi9h nibble of

: EOF (end of tile):
: code

:-------------:-------------------:
9 Low nibble of

: EOF code

This bvte-Pair 9ives
the EOF code. Anv non-:
zero value means end
of file (no more
records follow). A
value of zero means
more records follow.

:------------:------------------:------------------------:
10 : First bvte of

: first data Pair
:------------:-------------------:

1 1 : Second bvte of
: first data Pair

First bvte is ASCII
code for first hex
di9it; second bvte is
ASCII code for second
hex di9it.

:------------:------------------~-------------------------:

(continued)

PAGE 42

•

•

•

•

•

•

MODEL I I TRl3DOlS

(Record Format, continued)

: Char-acter·
: Numt,er· Content.-::.

COMMANDB

Comment:::-
b------------:--•----------------:-••----------•----•~-------:

: Firsst lrc"l:e of
last data Pair·

Second bvte of
la::ist dat~1 Pair

Fi1's.t bYt<1 of'
data checksum
!hi9h nibbl<1l

:
Last Pair· of
dB.ta. r:hB.r·:a.cter·s

: This Pair ~ePresents

:

:

: 2 1 s comPlement of the
data (all bvte Pairs ~

after the»:• :
:------------:------------------1 UP to but not includ- ~

s~'? 1:ond b·,,.·tf:' 1:,f

da.ta checksum
(1 ow nibbl-2)

: in9 the checksum>.
; Note that each bvte

Pair is converted back:
to the ori9ina1 bYte

: of data befo~e it is
~- lj !Tiffi\~ d ,.

:-------------:----·--------------:-------------------------:
Note: OnlY the data bvtes Cchara~ters 10 th~ou9h 9+(N*2)
in m-em.:ir-v ..

, Char·acter·
: Numbt~r-

SamP ·1 e Da. ta
: ASCII Hex Value 1

=------------:----------------"---:

' '
'

'

'

1 .-, ,.
3

'• 5
6
-,
' 8
9

10
11
12
13

1 ' •
15

'
'

'

" ' " 3A
110u 30
ll2ll 3/:
II •")ll .,. 32
u911 3B
u ,~ lf ;m
U (2)ll 30
ll(lj:H :10 ' 11011 30
n ;3n ;3:5 ' 11711 -·~-y .., '
u711 37
11011 31Zl
n5n 35
l!DII Lp\.

This racord will contain 2 bYta-Pairs of data:
n3u 11 7" rePresentin9 the value X'37'
u7• "0" rePresentin9 the value X'70 1

and will start loading at X'2811l1Zl'. Tha ona-bYta sum of tha ori9inal
bvtes (represented in Pai~s bv characters 2 throu9h 13> is X'A3'.
The 2's comPlement of X'A3' IS X'5D'--which is represented in bvtes
14 ar,d 15.

MODEL II TRSDOS COMMANDS PAGE 44

Notes on Usin9 the UPioad Function

Because of the baud rate and the absence of complex Protocols for
error handlin9, re-transmissions, etc.1 the UPload function is
intended for hard-wired machines, e.9~, from a develoPment machine
to the Modal II in the immediate vicinitv.

•

•

•

•
MODEL II TRSDOS COMMANDS

(M2DOS;;'!B 8/ 6/ 79)

DIR
List the Diskette Directorv

:: ------~---------------••--•-M---~-------•-•--------M--•-----M---M•M--~-::
DIR {SYS, PRT)- :

:_,d._ is a dr-iv~ S:Pecificatir;:,n~ {The coli;:in :: befor-e .!L_
is- <:iP'tii:,na.1.) If :.Q._ i~- i:,mitted, dr-ivt: zer·o ::
is used ..

SYS tel 1 s TRSDOS to lis,t 5,ystem ar .. :l user- fi l .es.
: If SYS is omitt.ed, onlY us.er- files ar-.e listed.
: PRT tells TRSDOS to list the directory to the
, Pr-inter. If PRT is omitted, TRSDOS lists the

directorv on the Console DisPlav~
___ .,.,. __ ,..., ... ~------------~--M----·--------------M---------------::

PAGE 45

This command 9ive~ vou infopmation about a diskette and the files it
i:::i:tntains ..

To Pause the listin9, Pr-ess <HOLD>. To continue, Press <HOLD> a9ain.
To t.er-minate the listin9, Press <ESC).

• Examples

DIR

•

DisPlaYs th• di~ectorY of use~ files in drive zero~

DIR 1 PRT
Lists to the Pr-inter- th.e dir.ectorY of us.er files in drive 1.

DIR {°SYS,PRT)-
Lists to the Printer the directory of sYstem and user files~ The
braces are re~uired to Prevent TRSDOS from takin9 SYS as an invalid
drive specification .

MODEL II TRSDOS

Sample Directorv Listin9

(,)
r

DI SK NAME: : T FltiDOS @
FIUc NAME@ CHEATED

RAMDOl'I
DEMO

TEBT/OLD
DISPL,\Y /DEH:i
DBG

MM DD YY
7 31 79
7 :·31 7'•;
7 31 79
7 31 79
7 31 79

~TTRB

D·•·A 7
D* Xl1l
D*X0
D*:,:0
p,;.:,:ilj

f'* Xt1

COMMANDS

DRIVE:3
REC&;:' <.]FILE

TYPE LEN
F 1
F 1
F 1
F 1
F 256
F 256 7 31 7'1

309 FREE GRA~IUL.ES IN 2 EXTENTS *'H,'
1:

What the column headin9s mean

PAGE 46

08/11)6/79 . 00.48.33
NMBl'<[l] NMBfl(~ SPACE
RECS EXTS 1sLLOC ~&~' 167 1 ('!) 5

3::,;-7 1 5 :2:
210 1 ~ 1 _,
204 1 l:J 1

1 1 ~ _, 1
17 1 20 17

(7J F'i 'l<r:: Nam~~---thB nam-e and i!?'XtBnsion as:.si9ned to .a file wh~n it was.
created~ The Password (if anv) is not shown.

C~eation Date--when the file was created~

Attributes--• four-character fiald.
The first character is eith•r P fo~ Pro9rarn file

D for Data file,.
The second character is either S fo~ Svstem file o~

* for User file.
The third cha~acter 9ives the Password Pr·otection status~

X The file is unprotected (no Passwords}~
A The file has an access wor·d but no

UPdai:s? word.
U The file has an update wo~d but no acc@S$

•

(}j)
EOF

BYTE
166
80

£.~~9
21ii3

0
(~

•

•

MO DEL I I T i'\SDOS COMMANDB

• wi::,r·d,,
8 l'he file has both uPdat~ and ~ccess words~

The fourth character specifies the level of access assi9ned

lfll'\Fil,;,
~ F

V

Kill file and everYthin9 listed below.
Rename file and evervthin9 listed below~
Ni:,t u::.ed

4 Write and evervtin9 listed below.
5 Read and evervthin9 'listed belowff
6 Execut~ o~lY~
7 l'fo n<e.

TYPe--lndicates the r·ecor·d tvPe for
Fixed·-len9th records fixed-len9th
Variable-len9th r·ecords

t hie f i 1 •.
r-ecor·d~.

rz:\R~cor·d L"2n9th---A;;.;E.i9n:d HJh€n t~1e fi 1~ wa~. cr·,:;;,at4;1d (;;i_ppl it:~- to
V11xed-len9th record files onlYJ.

PAGE 47

1'4'Numtie1~ of R~>;(:i::.~·~s--"tH:iw m>:in'Y 1 ug i ca ·1 . r-ecor·ds. ~~ve be12n wr·1 t t-.£-n ..

~Aste~1sks s19n2tv none have been written or tile has variable 1er,9th
records and number written cannot be ca1cu1ated.

~NumbE:r· of E::-<tffnt::..;.-«-+lou.1 man•y· ::;·.-esim<2:nt~- (c:i;:intis.iuous, b'l,:,ck::- i:1f UP to 3:?
~g~anules) of disk sPa(:e are ~llocated to the file. Asterisks si9nifY

• rieirif: h;i.ve bi::.~~-•n a 111:,c-.:1.t-E:d ~

'<!j}t3P~.c<:t A11ocated-··•·"How man•y• .s.ector·s {::;:::)6 ti·y•t~ bl,:tc:k:~) ar-e a.lloc;i.ted ti::,
the file. Asterisks si9nifY none have been allocated.

~SPa.C'I:! Us.ed---i-·lotiJ mari·-r (tf th€.'s~ s.1::cti:1r·::. have .actual 1--f b'i?ien utr·ittE-r, ..
~Asterisks si9nifv none have been allocated.

(iii Lnd of Fi lt: {EOf--:') B·y•te--Show'.:'. the star·tiri9 Pos.iti,:in in a s-2ctor· of
~ the last record written~

~FrE:E• ~'.Pa.CE:- R-2~1ainin9--~i:~:11s. h:141 man·y· 9r·ar1uls:1:. (1280--b~te hl.:,ck:::.) .ax--2
~ free ror stor1n9 new 1ntormat1ona Also tells how the tree SPace 1s

or·9arii:-~-2 .. d, i~<::., hi::1t1J m..a-.nY contj.9uous. blc1cks. (extGnt'.f.) m-ak,e UP the
f r-f::v: ;;. p;;:1,ce u

•

MODEL II TRSDOS COMMANDS PAGE 48

DO
Be9in Auto Command InPut fr-om Disk File

:-------·--·--:
DO file

file :'.:-Pecifies a fi l{::., cr·ea.ted with the BUILD command
:---:
This co~mand reads and executes the lines stored in a special-format
file created with the BUILD command~ The Svstem executes the
commands Just as if thev had been tvPed in from the Kevboard, except
that thev are not echoed to the Video DisPlav (except for PAUSE).

Command lines in a BUILD file mav include librarv commands or file
specifications for user Pro9ramsu

When DO reaches the end of the automatic command input file, it
returns control to TRSDOS~

The commands DO and DEBUG canr,ot be included in an automatic command
inPut file ..

Special Notes for Running BASIC Automaticallv

You can include a command to run BASIC in the DO file. For example,
the line:
BASIC PROGRAM
Tells TRSDOS to load and execute BASIC. BASIC in turn will load and
run PROGRAMu While the BASIC Pro9ram is running, the kevboard will
operate norn,allv, with one exception: Pressin9 <BREAK> at anv time
terminates automatic command inPut and returns You to TRSDOS READY.

1·0 resume automatic command inPut, a BASIC Pro9r·am must return to
TRSDOS READY via the SYSTEM command. If the BASIC Proaram simply
ends and returns to the BASIC command mode, the kevboard will
function normally EXCEPT Pressing <BREAK> will automaticallv return
YOU to TRSDOS READY.

General Notes for Automatic Execution of User Pro9rams

While DO is executing, a user· Pro9ram cannot set UP a <BREAK>-kev
Pr·oct?ssing P-r-•:i(Jr-am .. (S~;;.e SETBR~\ in "Technical Infor·mti,:ir1 11

.) Ins.ide
the user Pro9ram, the kevboard will function normally. When the
Pro9rarn ends and returns to TRSDOS, automatic command inPut will
r·e '.=- ume ..

DO STARTER
l'RSDOS will be9in automatic command inPut from STARTER~after the
operator ans1uers the Date and Time Prompts ..

•

•

•

•

•

•

MODEL II TRSDOS COMMANDS PAGE 49

AUTO DO STARTER
Wh;;;n;;,ver· you star·t TRSDOS, it wi 11 be9in automatic cc,mmand inPut
from STARTER.

Suppose vou want to set UP the following TRSDOS functions
automatically on start-up:

FORMS W=SIZI
CLOCK ON
VERIFY OFF

THEN use BUILD to create such a file. If YOU called it BEGIN, then
us.-e the command:

AUTO DO BEGIN
to Perform the commands each time TRSDOS starts UP •

MODEL I I TF<SDOS COMMANDS

DUMP
Store• Pro9ram into a Disk File

DUMP file {START=,addr<'ts.s.-1, END=a,jdr·eS:s--·2, TRA=
addr·• •:. s-3, ··1iEL0°~ad dr·;, s s:-4, RORT•• 1..!.1: te _r)-

: fil• is a file specification.
START"'addr·c,s.s.-1 SPBcific,s the s-tar-t addr-ess. of

the memory block.
END=~_ddr·es.s.·-2 sPeci fi-8:±\ th~ ~nd add1 ... e~-s -t:1f -1:he

memor·Y b11:ic.k.
TRA=~ddress-3 specifies the transfer address, where

execution starts when the Pr·o9ram is loaded. If
omitted~ addresz-4 is used.

RELO=address-4 specifies the start address fop loading

:

. .
the Pr·o9r-am back into memor--•y•~ If ,:i,rr,itt,.:;,d, addr·e~.~--.-J :
is us.ed ..

RORT•lettc,r- specifies whether- whether- the, Pr-o9ram is ,
directly exc,cutablc, from TRSDOS. RORT stands for
»Return OR Transferu. If RORT=R, then TRSDOS can
load but not execute file~ If RORT~T, then TRSDOS
can load and execute file from the TRSDOS READY
mode. It RORT is omitted, RORT=T ia used.

Note: Addresses must be in hexadecimal form, without
the X7

' notation.

:

'
'

PAGE 50

This command copies a machine-lan9ua9e Pr·o9~•m from memory into a
Pro9ram file. You can then load and execute the Pro9ram at anv tirn6
bY entering the file name in the TRBDOS READY mode.

You can enter machine lan9ua9e Pro9rams directlv into memorv, via
the DEBUG command~

DUMP LISTER/CMD START=7000, EI\ID=7100, TRA=7004
Creates a Pro9ram file named LISTER/CMD containin9 the Pro9ram in
memory locations X'7000' to X'7100', When loaded, LISTER/CMD will
occupy the same addresses, and TRSDOS will Protect memory be9innin9
a.t X'7000'. Thee Pr·o9ra.m is. exs,cutable fr·c,m the TFmDOS READY level.

DUMP PFWG2/CMD START=6000, END=6Ffil111, Tl,A=::3010, FlEL0=:3000
Cr·eates a Pro9r•m file named PROG2/CMD containing the Pro9~am in
addresses X'60m0• to X'6F00'. Whc,n loadc,d, PROG2/CMD will r-esida
from ~•3000' to X'3F00. Execution will start at X'3010'. The Program
is executable from TRSDOS READY.

DUMP ROLITINE/1 {START=6800,END=701Z10,RORT=R}
Creates a Program file 1uhich cannot be executed from the TRSDOS
READY lc,vel. TYPicallY, this would be a routine to be called by
another Pro9ram.

•

•

•

•

•

•

MODEL II T RSDOS COMMANDS PAGE 51

(M2D0S3 8/6/79)

ERROR
DisPlav Error Massa9a

: -------·---..... ~----·----------~--·••<'•-·-----~--·----, .. ------~--------------~----"-"-----·:
: ERROR number :
: ri1~1mber· ·{s-·a decimal n1Jmber· for· a TRSDOS \4tr·r·i:•r code :
: -----· -- ------~----------------- ---·~--------------------- ... - - ---~---~ --- :

This command displavs a descriPtive erro~ m@ssa9e~ When TRSDOS 9ives
vou a reverse (black-on-whit~) messa9e like:
**ERROR 47 * *
You tYPe back
ERROR 47
to saa tha full error massa9e.

ERROR 3
Gives vou the message
PARAMETER ERROR ON CALL

MODEL II TRSDOS COMMANDS

FORMS
Set Printer Parameters

:------------·-------------------------------------·--·-------:
, FORMS .(p = Pa9s? sizs?, L = l ins?s, W "' width, C '" ,:,:,ntr·Ql), : FORMS .CT} -- .. , .. ___ _

'

P = -~''- :,i-i,:§! i:"11:; Tr,soos the t.:,tal numb1H· of 1 ines
Per Pa9e~ If omitted, 66 is used.

L -- J inl'i:_g__ t<?l 1 s. TRSDOS the ma:c,imum numt«.H· 01' 1 in<?s.
to Print before an automatic form feed~ If :
omitted, 60 is used~ lints cannot be 9reater :
than page :'::',iZ't:'w

W - widtti_ t"l 1 s. TRSDOS th,;, ma:,dmum numb,;,r- c<f
char·acter·s. p,;,r- ·1 i.ne. If omitted, 132 is us.ed.

C • control tails TRSDOS to initialize th,;, Pr-int,;,r-

'
'

by sendin9 it the specified code~ :
Th,;, coda can be h,;,xadacimal value in the ,
ran9e <m~FF>. Do not use the X' J notation. :

FORMS Tis a special version of the command, telling :
TRSDOS to advance Printer to top of fo~mM
Printer must have been Previously initialized
and must be r·eadY. When 1· is 9iven in the
option list, anv other kevwords in the option
list ar·e i9no~ed~

'
:

:--:

PAGE 52

This command lets vou set UP the TRSDOS Printer software to suit the
Prints?r You have attachad. If tha Printer was on-line wh,;,n YOU
star-tad TRSDOS, and the default Parameters P • 66, L • 60, W = 132,
and C = 0 are aPP~oPriate, then vou do not need to use this
i: C1mmand ..

In addition to sattin9 Parameter-s, FORMS v,;,rifies that the Printer
is on-line, and it lets You adJust paper to the top of formo

E ::<am F-' l e ~-

FORMS
Resets all Par-amatars to their- default values.

FOPMS l..=56
Resets the maximum number of Printed lines Per Pa9e to 56, 1eavin9
10 lines blank on each Pa9eo

FORMS C=14
Sends the initialization code X'14' to the Printer.

FORMS T
Advances Printer to top of fo~m. Useful when YOU have done some
P~intin9 and want to sta~t next Printin9 at top of tormff

Setting the Pa~ameters

•

•

•

•

•

•

MODEL II TRSDOS COMMANDS PAGE 53

Pa9e Size. MultiPlY Your form len9th in inches bY the number of
Printed lines Pe~ inch to get the aPProPriate value. Most Printers
Print 6 lines Per inch. Therefore standard 11-inch forms have a Pa9e
size of 66 lines. That's why the default is PAGE•66.

Lines Per Pa9e. This number determines the number of blank lines on
each Pa9e. If You set lines •~ual to fB9e size, then TRSDOS will
Print ev&rv line on the Pa9e. If vou set lines equal to page size
minus 6, then TRSDOB will leave 6 blank lines on each Pa~a. Lines
Per· Pa.91:: c:ar,r,.::*t e::.::cet'd Ei!5H? sj ff!,,

Width. This number sets the maximum number of characters Per line.
If a Print line exceeds this width, TRSDOS will automatically break
the Jina at the maximum len9th and continua it at the be9innin9 of
the next Print line.

Control Codes. Some Printers require an initialization code (for
example, to set UP for double-size characters). The code vou specifv
i~- ::.er,t to the Pr-inter· dur·irt9 e;-::ecutic,n of the FORMS command ..

MODEL I I TRBDOS COMMANDS

FREE
DisPlaY Disk Allocation MaP

, FREE , d {PRT)

'
:,d_ is a dr·ive specification .. (The colon : ti.~for·e .fl is

ciPtional ..) If =& i~. (,mitt,ed9 dr·ive 0 is·. us.ed ..
PRT tells TRSDOS to send th• ma~ to -the Printer

If PRT is omitted, TRSDOS sends the maP to the
Console DizPlav~

PAGE 5'•

This command Gives vou a map of 9ranule allocation on a diskette# (A
granule, 1280 bytes, is the unit of space allocation.> This
info~mation is useful when YOU want to optimize file access time.

When a diskette has been used extensivelv (file updates, files
killed, extended, etc.), files often become se9mented (dispersed or
fr·a9mented)k This slow$ the access time~ since the disk read/w~ite
mechanism must move back and fo~th across the diskette to read or
write to a file.

FREE helps vou determine Just how se9mented a diskette is. If You
decide that You'd like to ~e-or9anize a Particular file to allow
faster access, you can then COPY it onto a relatively «clean~
di ,.kette.

E:,.,:amPl e

FREE
DisPlavs a free space map of the diskette in drive 0.

Fl~EE .lPRTr
List the fr·ee space maP for d~ive 0 to th~ Printer~ The braces are
required so TRSDOS won't take PRT as an invalid drive
!E, Pe>,: i f i cat i o r1 ..

FREE ,2 PHT
Lists the drive 2 map to the Printer~

•

•

•

MODEL II TRSDOS COMMANDS PAGE ~35

•
A TYPical FREE DisPlaY

Four special symbols a~~ used in the FREE map:
Ur,1Js,ed Gr·anu le

D Directarv Information
X Allocated Granule
F Track is Flawed (Unusable)

Here's a tYPical display:

F R E E s p A C E M A p
TRf'(~ TRSDOS ~-----·-·-·-·-----------------·--·------•-...---- DfU VE, 1/l
01-04• X
05-08: X X X X X X X X X X X X X
e'l9-12::
13-16:
17-::?0•
21--2 1+~
::C:5--28, • 29·-:52:
33-·36:
37-Lfl2)'
Li-1-·44: X X X X X D D D D D
45--48: X X X X X X X X :x X X X X X X X X X X X
L,9-52'
53-56::
=17--60:
61--64:
65-68:
69-1:'2:
73--76:

•

M()DEL I I TRSDOS C(iMMANDS PAGE 56

I
Swap Dis-, k(:;;' t tt> ~-

:--N----------------~N---------------------------------------:
I '

Immediately &fter vou chan9e diskettes in anY drive, enter this
command so TRSDOS will be able to Per·form imPo~tant "bookkeeping"
tasks ..

I
tells the Svstem You have chan9ed one of the diskettes~

•

•

•

•

•

•

MODEL II TRSDOS COMMANDS, PAGE 57

i'ULL
Del<,ti> a, FilE-

=---------------·---------------------·-·--·---------------------··
: KILL file ft

~ i$·. a fi 1.;;:; :::-Ff!cificati,:in ;

This command deletes Q fil~ from the dir·ectorv and frees the SF~ace
allocated to that file~ If no d~ive is specified, TRSDOS 1oill search
for the file, star·tin9 with drive 0. Before deleting the file,
TRSDOS will disPlav the file name and the drive that contains the
file. 'fype Y <ENTER> to Kill the file, N <ENTER> to cancel the
command ..

DO NOT KILL AN OPEN FILE.

KILL TESTPROG/BAS
Deletes the named file f~om the first drive that contair1s it~

KILL JOBFILE/IDY.fo99Y
Deletes the named file from the first drive that contains· it. The
file is Protected with the Password foggy~

f\ILL FORM/12:,::,
Deletes FORM/123 from drive 3.

When uPdatin9 a file, it is a 9ood Practice to input from the old
file and output updated information to a new file~ That way~ if the
update is wrong, vou still have the old file as a bQckuP. Wt1er1 vou
have verified that the update file is correct, votJ can Kill the old
file.

KILL i~ also useful in conJunctio~ with Pr·e-~llocat•d files~ Suppose
Yi:iu have finished tor·itin9 ti:1 a. Pr·e"-al ·1,:ic:e.t~:;;.d fi'!e, and Q!lf:' i::ir· mor·e
9ranules ar·e unused in the Pr·e-allocated file~ Then vou can copy
the Pre-allocated file to a dvnamicallY allocated file, and
afterwards Kill the Pre-allocated file, This is the onlv wav to
~~rluce the size of a Pre-allocated fileQ

MODEL II TRSDOS COMMANDS PAGE 58

•
LIB
DisPlaY Library Commar1ds

=-----------·-----------·---------·-·---------"---·--------------:
I LIB :

fhis command lists to the DisPlav all the Library Commands~

LIB

•

•

•

•

•

MODEL II TRSDOS COMMANDS

LIST
List Contents of a File

LIST fi 1 e .(PRT, SLOW, R=recor·d-number·, A}
fi leis. a file S',Pecifica.tion -·~----~--~
PRT tells TRSDOS to list to th• Printer. If PRT is ,

: omitted, the Console DisPlav is used.

'
'
'

SLOW t•lls TRSDOS to Paus• briefly attar each
record.· If omitted, the listin9 is continuous. :

R=record-rumbar tells TRSDOS th• startin9 record for ,
------ ··-- -------------

the l istir,9. ~~r-d-number must ba in the r·an9•
<1,65535>. If omitted, r•cord 1 is used.

A tells TRSDOS to list ASCII characters onlv Cno
hexadecimal values). If omitted, ASCII and
e9uival•nt h•xadecimal values are listed.

'
'
' '

: -------------·-------·---·-----------------------------·-~------:::

PAfaE 59

This routine lists the contents of a tile. The ligtin9 shows both
the hexadecimal contents and the ASCII characters corresponding to
each value. For values outside the ran9e <X 7 20 7 ,X 7 7E 1 >, a Period is
dis.pl aYed •

To stop th• Tistin9, press HOLD. Prass HOLD a9ain to continue. Prass
<EBC> or <BREAK> to t•rminate th• listing.

LIST DATA/BAS
Lists the contents of DATA/BAS.

LIST TEXTFlLE/1 SLOW
Lists th• contents of TEXTFILE/1, Pausin9 after each record.

LIST TEXTFILE/1 R=100, A
The l istin9 ,e.tar·ts. u1ith the 100th r,ecc,r·d ir, TEXTFILE/1. Only ASCII
characters are disPlaved.

LIST PROGRAM/CMD PRT
Lists the file PROGRAM/CMD to the Printer .

MODEL. !I TRSDOS COMMANDS PAGE 611l

•
Listin9 Format

LIST numbers each record as it is listed, and
showing the relative Position of each bvte in
sample listin9 after the command:

Prints a heading
the record. Here•s a

LIBT VARFILE PRT

W;RF!I .E

P=-
LHL-~ 'Tl

R"-' J

R-= 4
1.RL-~0

ii- !z
l F:. 1 i}i,

f' -- 7

Lf-<L-~ L>"•

"i"-' c:;
L.EL 00

1.-:ED JUL 04 1971:J 185 ~-- >,/.46.08 f'A.Cr:

B'✓Tt l ••• 5 •.. lv) ••• 15 ••.. 21Z •.• ?5,,. 3i2l ••• 35.,. 40.,. 4':i •• 5(~ ••. SS.,. 60 ••• 65.,. 70 •.• 7'J ••• BfJ ••• 85 ..• 90 .•• 95 •. j:,:)0

-t.: 111 L::.::_.:::::;;;·33133,\LI; 44S55S566666 777T18832899999l,AAAABBBPBCCCCCDD0flDEEi::.EEF'FF FT21C0JZJ0 ii 11 L"}2?2:;:,
'."i]333333333323333333233333333J3333333333T3333J4 i, 444444441t44 1r4 <tL,441,_44444444.,:..433:3.3:3.333333J3~5:3
Bl:;. 1!1:::::2::;;3:33334,:.444555556666;.';,777 77E!BB8899999111 l 1 2-:,2 ✓:2333334lf44.'.; 555:,:;,::,~c,t,:_,,s:n00ne 11 j 11 222:2:2

101 ff55S'J:-Jb6hi,6 1·n1 n.m8f.J8';990'{/l,Af'.AAPB!:'BBCCCCC00
:~:.~33:_:c}::?J;:-;33~1.,!,::,333:U::£3333334 It t, .'.1 I; 1ti1 4 444 !t44 t144
l15S=i5S6:C,/;;,/,6 77T778BBB8'7999'?: 1-:. 1122:-:::7.'1:,crL,;L4

. l 111 1;;:::.:::~~L3333344'-t44:J535566b6677Tf 7888889S'9'?9AAAt,AB83BSC'.:CCCDDDDDEEEE£F00 FFl7.Zl()!tl011 ~ 1 t :·2::2·233_-:;JJ4-t"r4
q33JJ33J"JJJ~.3]333J:JJJ:J:)j'.:.533;:_;:3JJ:3:-3:i3:J:~:s::eJ3JJJ3-44i.4-tLf44t>'4,if4•f-'fit<;4LcZ;L[Lfiflf4/1l•-"J-l14fi.JJJ33]J.,j:J33333:3.J:33:JJ.3:'.J:}
811111::;.~;;,c:.:.·,~:.:.B:TJA4 1,4'+'.'i"',7~,566b6677 7T/888DD'/9S''?'? l. 1 .-'. 11 :;:::::r;;? 33:_:r314444455ss'.:ib6tdv'.:000H&Jl 1 l i l ::?2-.~2,;:;;-;3,_;3;~4{1t,if

l ('J l 4 :'°•:'· :','.:S:'st,M;l!:, 7777788888"19999 A1'.\ArV,CP.BF\8C('CC<:nDDD0':'Tf::.£EF F :.-·:
.] J 3;:;3:33;f :.'. :2 ::J 3-.J 3 :5 3 :::r3:'; .:::-;·_;;:;;:,:: n 44 4 4-+ 4-'+4 44 4:1 ft k 4 4 A 4 Ls l} 4 '• 4 !4 4 44 4•f
/1 :,;",55~,66/:,b6 t 77('"?8t:.:8d8':'i''7'7'0! 11.~ 1222.7•:7.3:.533344444:'.,S555!.,6l,6

'Ii 1 l 11 ::-.-:::-::·:,·23:"D:0:3t.44'14S5SS5:;;u:_,66 "/7"l778P88699999AA.:.l"AE:.',BB::,f:.lC
33::,,,s3;:,0.·.1.::d:2.u:u~·13:-:::1:;::i;.::;::n.1333,:s,3;,:;.,:::.:;:tsJJ3:-.T.!::1,n?.J.:,.44L4444.:;44
91 1 ! 11 ;;';:,z:'.;,:333j3444:, :1 :355:',St.,Z..066777778888899999111 ~ L::'.:'~''.::;'."·J

, ~ t 111-::.,L:;;~:;;:.:.:J:'.:!JJ~;t4.:44:,ss=:s.56666677T778::38839'f[?99,\AA.l,ABE'8i32,('CCCCDDDDDLEE[E;TFrF't'\C".,(),?.11?,11111.::.:::::..:;:.2:.i:33;:34v14
r; 33 3 :3~33x;:133 33 :·; :u3 3333.: 3 3 3 33 .1:~ :1 T! 333 33S3 3,3;:, :3 -3 4.:..4 4 .-, 4 ft 1.J ,, lt I-j 1-, 1; •'.i- 4 44 i; 44 4444 4 44 41+ 4 J::J::; .::.u 33 :D333 33 33 3 :.\~13 33.53
4.l 11 - 12;;:,;·2::;::32::n:~/+444L '.J:',55J6¼obi, 777778888899999111 11 :;,'. ;,;;;·:,_3:::;;::-;:7441+44SS'.:,5566666000fW'l 11 i 1 j ·-::::,:,·_~,;. 23.3:333--+444

J.8 l :1 '.:,'.J ~! '5 '=, !:,i-J,t,t, 7? 7 / ?:'31:m8l:F?'i"/"!?AF1ld<1\~,E.P,f?,P CC ::CCJDi)!JiJ:C:!:..
33;333;:;3-;_13::r:::r:,;:-;3~3;::33333:5.J~t;:,1, 41,t;L .'.;l; t.ll 4444441.4444
<1-'.JSS'.;;':ib/~,f,.l,6 7777 ?8BUH8'f'i?'J9i 1 :. 1 1-:' ?:·:,:· . .,:1,3J3.3.;,..t,i,.44;;::3

- l 1 j l i ",.;_,~.:;:'.2'.,;33,::u3u+t,1;.<,"',"i':',5'.jl-,,!.,bt',6 Tl II 7888t3d';"}'?0'.'/,.C,AAABBf-'B-','·CCC{'.C::lDvDDS];;.E :::r--:r:r:1:c1-·TG2i87i01 1 1 t t ;:. ;::,2z:, :u:-5,3-54444
9 ~) :.,:::,3,::1::. 33 33 3 3 :1, 1 :;::-: 321333::n.JJ.3 ~;;_;:, :J ::, 3 3:,:::1:_,;3:;: 33:~ 3 ::n:.;4 ~-;;,.;. 4 4A 4 4:, 'I f; :f ·+ ~,- ,';. !; 1, :1,J; 4 4•\44 44 ~f4 4 3.:._~:, :.;:_; :s: <'t::!> ::;:; .33 ~ ~l ::;:.:: :.i:t 3 J:33
0 l 1, J 1 l :,,_:,.:::_- c.::::::]~;3::::31, i1 c,44 :"i55'3 S{,666c~ ? ! /'I 78fJCB'.''!'?'?'7'7'71 J 1. j t :· ,: :•,;:;:JT3J3Lf44-+•t5 ',j~J-5 'j :'..,..,\f,Y,V111')1;:;:;'li~ 1 1, 1 l 1 2:°''2. c:·,:;,3,J::5J;344.;, 4

1 lill -' SS::',:'-,:'i666bb-?'?7T?68888?97'.r0Af",AAAE'·BP,8£?,CCCCCDDD
313T53in33~i.:i.JJJ3.J:3s:;;-5,37_33;1.:.;,1tt,'+444i.444444444
t;5:_;':',55!.,b/;,t,(:,f7777888S8?79':'''1 l 1 ! 1,;-::?.?:'.'233333444

: 111 J l; ;:•-:,-•.:,•?:T-~J.!344'1.tt4:J::;_:;:,5c,.'.'o,',6l~ T71/7 788SC~i:!':1'7?9'?A!•,>\,At,P:8?.f?P,CCGCCLl:.il)DDE:":TT:::!~-FFFFiZl!.1210l!! l 1 L 1 ·,;:;22.:•·i•;:;-:::.-,;:,:--;;t, it<;.!i

7--:;:,;: ::-<> 33:;3;:: 3J 3 :, ;-.: 3 33:::: '.:?:c:n::< 333 3~3:., ,,1.:._;33:::::::::::,3 :;3 J 33 4 4 4444444 44 44 4 4,:, 4 • t, :, .:, 4 4 It /;4 44"1 4 33 J0~1~:;~:::· :::.: :L-3:~ :c ::- :_ri::: ::;:-;,33
Ci 1 ": L,,::.;::?/4-;J:s~:.-::·/2.:JA•i-444'::555'::666t,67:'··,77 8888B9'!9S'f} .l .l l .' LC·..C::'.'.':'!'.'.;~f;r333444-4'f3:J:i5'.:1:•s.,i.,.\i,0t:'liZl\?"j '.11114:2~-::::::-·; ;.'::-:S '{,;,,:, /1 !;

J. 0.'. :1-~',55'.l""hb6b67T!T7(·JU3BD9<;,·tr
'.'l:r:1:.:::n-1,:..1.;;_.:~:.,,13:nx~To:·:1:1~1:J
:, 5\': SS-5 t,6666 "/'I";"'/ '!5'.:.18f"(C9?9

• 11 j 11 :::::. ';:::<:::)3,r;;344444;~'.;;,3'.);;J
1 SJJ,.53333~3:C:3333:i:33:~::Ct'.'1:'.,:33
1'. t 1 l '.1 :::::.2:.C.:L33333-'r"'l'4.:14'.:iS5'.:,3

~yn..-: 1. •• s .. ' j i'J ••• :s.'. :;:v., ••• 25 11':: ••• ~T:1- ... 4,:J ••. 4;,, SD ..• 55 ••• bet ••• 6::.i ..• 70 •. ' 7'3. 7 .. 30 ••• es ... ?O •.• 9'5. -100

•

•

•

•

•

MODEL I I TRSDOS COMMANDS PAGE 61

Here's a sample listin9 after the command:
LIST TEST PRT,A

PR06/TXT MOM AUG 06 1979 218 -- IDi.16.'.36 PAGE

E'.YTF.: 1, •• '5 ••• 10, •• 15 ••• 2121, •• :?5 ••• 30, •• 33 ••• 4fl .•. 1;5 • •• '10, •• 55 ••• 6121 ... 65 •.• 70 ••• 75, •. 821 ••• 85.,, 90 ••• 95 •• 100

R= 1
LRL"' 1

1140 JF TIME$,,,,, 1:00 PRINT ~Tim,e ia- 10::15 A.:1.--tim,e to wick 'JF the mai1." tE:ND.1150 PRINT "THI

101 SIS A TESl".1160 READ A,8,C.1170 DATA 3.J41592653'.:'.i8979:26231 333,0000!2rJ\ll30003222i.1b 3.3D9.
-------------------------·---------------------------------- ----- -------------

MODEL I I TFIBDOS COMMANDS

LOAD
Load a Pro9ram File

LOAD file
file is a file specification for a file creeted
--i;.; .. th;;, DUMP cmnmand.

:-----------------·--------------------·-----------------------:

PAGE 62

This command loads into memorv a machine-lan9ua9e Pro9ram file.
After the file is loaded, TRSDOS returns to the TRSDOS READY mode.

You cannot use this command to load a BASIC Program or any file
created by BASIC~ See the BASIC Reference Manual for· instruction$ on
loadinQ BASIC Programs.

LOAD PAYROLL/Ptl
Loads the file PAYROLL/Ptl.

Often several Pr·o9ram modules must be loaded into memory for use bv
a master Pro9ram. For axamPle, sUPPosa PAYROLL/Pt! and PAYROLL/Pt2
ar·€' modul-es,, arid MENU is, the mas.t~r- Pr·c,9r·am .. Then yc11J cou1 d tJ!':H? the
i:0111mar1d'.'::'.:

LOAD PAYROLL_IF~t 1
LOAD PAYROLL/P1:2
to 9et the modules into memorv, and then type:
MENU
to load and execute MENU.

Jf PAYROLL/Ptl and PAYROLL/Pt2 were DUMPed with RORT=R, then vou can
load bv tvPin9 the file name without the LOAD command, i~en,
PAYROLL/Ptl
PAYROLL/Pt2
After each is loaded, TRSDOS READY returns.

•

•

•

•

•

•

MODEL II TRSDOS COMMANDS

PAUSE
Pause Execution for Operator Action

:--:
PAUSE Prompting rnessa9e

PromPtin9 messa9e is an optional messa9e to be
disPlaved duri~g the Pause.

~--:

PAGE 63

This command is intended for use inside a DO file. It causes TRSDOS
to Print a messa9e and then wait for the 0Perator to Press <ENTER>.

E:,<a.mP 1 e

PAUSE Insert Disk #21
Prints PAUSE followed bv the messa9e and Prompts the operator to
Press <ENTER> to continue.

PAUSE
Prints PAUSE and Prompts the operator to Press <ENTER> to continue.

See BUILD and DO for samPle uses •

MODEL II TRSDOS COMMANDS

PURGE
Delete Fi le,;.

;: ------------------~---·-----·--·--·------·------~-.-------------
PURGE :,g (fi le-,:las:;.)

=1 is drive specification. The colon: is optional*
If :dis omitted, drive mis used.

file-class is one and only one of the follown9:
: SYS Svstem files (Program and data)
: PROG User Pro9ram files

DATA User data files
; ALL Al 1 fi lt.~s., user· and s.-·{::.tem

PAGE 64

lhis command allows quick deletion of files from a Particular
diskette~ To use PURGE, vou must know the diskette 7 S master
Password. ITRSDOB Svstem diskettes are suPPliad with the Password
PASSWORD.)

All Svstem files are r·e~uired for TRSDOS to function. Do not
eliminate Svstem files if You want to use the diskette in drive 0~

When the command is enter·ed, TRSDOS will ask for the diskette's
Passwo~d. TvPe in UP to 8 characters, and P~ess <ENTER> if vou tYPed
fewer than 8 characters- The Svstem will then disPlaY use~ file
names one at a time, PromPtin9 vou to Kill or leave each file.

PURGE •1
TRSDOS wi 11 let YOU Pur·9e fi lie~. fr·c,rr, dr·ive 1.

PUl,GE
TRSDOS will let yc,u PUr9e files from drive 0.

•

•

•

•

•

•

MODEL II TRSDOS COMM,<\NDS

PROT
Use Diskette'& Master Password

: --------·--------~---------------------------------·-----------::

'

:
:

'
:

'

'
'

PROT :_Q.. {OLD=Pas.s.1.1.1or·d, i:1Ptions->
=-A is a drive specification .. The ci:,1 or, : is optional ..
9Ptions include anv of the following:

OLD=Password specifies the diskette 1 s current
Password. This is ~equireda

options include the following:
PW Tells TRSDOS to c:han9e the master Password.:

If omitted, the master Password is left ,
unc:har,9ed.

NEW=Password R,a;quir·ed after· PW, 9ives TRSDOS the
new Password (up to 8 characters)

LOCK Tells TRSDOS to Protect all user files
with the latest Password. UPdate and
access words will both be set to the
ma~.ter- Pas-swordR

UNLOCK Tells TRSDOS to remove Passwords from all
user· f i 1 es .•

If LOCK and UNLOCK are omitted, user file Protection
is. left urichan9ed. If i:in.e i::- 1Js-2d, t.:he- other· must be
<-mitted.

'

' '
'
' '

:-----------·---:

PAGE 65

PROT chan9es file Protection on a lar9e scale. If YOU know the
diskette,s rria.ster- Pas:f.word, '"tO-U i:an i:hari9e it. You car. also Pr·c•tE<ct
or un-Protect all user files.

A diskette's master Password is initially assi9ned durin9 the format
or backup Process. The TRBDOS diskette is SUPPiied with the master
Passwor·d PASSWORD.

PROT :1 (OL.D=PASSWORD, PW, NEW=H20)
Tells TRSDOS to chan9e the master Password of the drive 1 diskette
from PASSWORD to H20.

PROT : l7.l (OLD,=H20, UNLOCIO
Tells TRSDOS to remove Passwords from every user file on the drive 0
diskette (must have the Password H20).

PROT ,0 (OL.D=H20, PW, NEW=EL.EPHANT, LOCK)
Tel 1 s TRSDOS to chan9B the maste1' password fr·om H20 to ELEPHANT and
assi9n the new one to every user file •

MODEL I I THSD0,3 COMMANDS

RENAME
Rena.me, a Fi 1 ,~

:------------~----·-------,·-------·---··-----·--·------------·--------.
Rc,narnc, filc,-1 TO filc,-2

file-1 and file-2 are file specifications
If file-2 includes a drive sPecification or
Pas.s.wi:,r·d, it u.1ill be i9nor-ed, sinc,2 the file L1.1ill
remain on the same drive and will retain its former
Pa.s.s.wor·d, if anY ..

¼TO~ is a delimiter. A comma or space mav also be
u'.::.ed.

~----------------------------------·---------------·----------------:

PAGE:: 66

This command r·enames a file. Or1lv tt,e name/extension is chan9ed; the
data in the file and its Phvsical location on the diskette are
unaffectedu

RENAME cannot be used to chan9e a file's Pass~Jord. Use Al'TRIB to do
that.

RENAME Miss/BAS TO Ms/BAS
l"RSDOS will search for· Miss/BAS star·tin9 with dr·ive 0, and will
rename it to Ms/BAS.

RENAME REPORT/AUEi: 3, REPOFH/SEP
flc,r,amc,s. REPOHT/AUG on dr·ivc, 3 t.:. REPORT/SEP.

RENAME MASTER.1234578 TO MASTER/A
Searches for MASTER and renames it to MASTER/A. The Password
12345678 must 9rar1t at least RENAME access (see Passwords in chaPter
1). The renamed file has the same Password.

•

•

•

•

•

•

MODEL. II TRSDOS COMMANDS PAGE 66A

BETCOM
£'.-:,at UP F<S-"232C Ci;nr1rnunicatic,r1~-

'

'

BETCOM i A•lbaud rate, word len9th,
B::::: { ~;at:!_!f_I~?_t°i~ ~g I"' d---, ~; r19-\h, ~

bit:;._l,
sci}

A=(oPtions> tells TRSDOS to initialize channel An
To turn channel A off, use A• OFF instead of
A ::::: (QffS)

If A :::::: 9Pttgri:::.) is. i::1mitt,.;.,d,. s.t>.;1.tus of chann~l A
i ::. unchf:1.n<.:~i,:d,.

e,:::;(,:1_Pti2_fil.) t~11~,. TRSDOS to initialize channel B ..
To turn channel B off, use B = OFF instead of

' If B = (options) is omitted, status of channel B :
i:::·. uncha.n9ed~

l"he options tell TRSDOS what RS-232C Parameters
to use. The following Parameters are availabl~:

100, 150, 300, 600, 1200, 2400, 4800
If not sPacified, 300 is used.
:'.h 6, 7~ E(
If not specified~ is used .
E for even, 0 for odd, N for none
If not specifi~d, even is used~
1, 2
If not specified, 1 is used.

Every option but the last must be followed by a comma.
The options are Positional, e.9~, the thi~d item in an :
oPtion list must always specify ParitYu ·rouse a default
\/alue;; omit th-&- c,ption~ If ·you w<::tnt to li:::.t ~.ubs>ec:nJ-ent
options, You must include a comma for each default.

This command initializes RS-232C communications via channels A
and Bon the back Panel~ Before executin9 it, YOU should connect
the communications device (modem, etc.) to the Model IIlt

See the Model II OPeration Manual for a de$criPtion of R8-232C
si9nals used in channels A and B. For hard-wired connection from
one Model II to another, see the wiring dia9ranr in Technical
Information, RS232C supervisor call.

Sf~TCOM uses the Special Pro9rammin9 Area above TOP (see Memory
Requirements>~ To use the serial I/0 channels from BASIC vou must
execute SETCOM BEFORE starting BASIC •

Once You initialize a channel, vou can beuin sendin9 and
receiving data, usin9 four SY$t~m routines that are set UP du~in9
:i.nitia.1 iza:tiori:

ARCV Channel A receives function code 96
ATX Channel A transmit, function code 97

MODEL II TRSDOS COMMANDS

!:H<CV
BTX

Channel B receive, function code 98
Ch~nnel B tr·ansmit, function code 99

PAGE 66B

These svstem routines are onlv available when the ~es1~ective
chanr,el has beer, initi~lized# See Technical Information for
detai ·i :; ,,

E<E:T COM i\~' (:,
S-et::. UP cha.nnel t,, 'for· :::.'f!r•i.:s.1 communii::ati1:in:::., u::-ir1s1 r.:t11 th-e
default Parameters~ System function calls 96 and 97 a~e available
fo~ serial I/Oa The status of ch8nne1 8 is unchan9ed~

SET COM B~ ('>800, B, , 2), .<\ 0 -0FF
Sets UP channel B:

baud ratr ..
B b:i t:s. l1.1or·d 1 en9th

P0tr" i i:Y Evt,n (d,,fau 1 t)
:::.top bits

and tu~ns off channel A,,

S~ET COM A= (2£i.00, 8 ~ 0) , e,::1~ (~ , , 2)
Sets UP channels A and B:

bB.ud r-a·tt:s.•
ttior·d 1 en9th
Pi::t.r·i, t·-,.·
stop bit:::'.

Chan n.e 1 /.1
2400
8
Odd
1 (default)

Channel B
300 idefa.ultl
7 (def:aultJ
E:v1;:n (default)
.-,
.,;;,

•

•

•

•

•

•

MODEL II TRSDOS COMMANDS

TIME
Reset or Get the Time

:--:
TIME hh.mm.ss

hh i::. >'3. two-di9it hour· ::.pecification.
mm is a two-di9it minute ~.pecification ..
~ i::. i:1. two-di9it second ::.pecifica.tion ..

.. il is ,:iptional; if omitted, .. 00 is used ..
If hh .. mm .. ss is 9iven, TRSDOS resets the time ..
If hh .. mm .. s°s i::. not 9iven, TRSDOS di::.1:,laY:~- lhf:

cur·r·enf.:time and da-te.
:--:

PAGE 67

This command lets vou reset the time or disPlav the date and time.

The operator can set the time initiallv when TRSDOS is started UP ..

After that, TRSDOS UPdates the time and date automaticallv, usin9
its built-in clock and calendar ..

When You request the time, l'RSDOS disPlaYs it in this format:

THU ,JUL 1 9 1 979 2011) -- 14. 15. :31
for Thursday, July 19, 1979, the 200th day of the Year, 2:15:31 Pm.

Note: If the time Passes 23.59.59, TRSDOS does not start over at
00.00.00. Ins·tead, it continues with 24.00.00. However, the next
time You use the TIME or DATE command, the time will be converted to
its cor·r·ect 24-~hour· value, and the date wi 11 be tJPdated. If the
clock is allowed to run past 59.59R59, it will re-cvcle to zero, and
the date will not be updated to include the 60-hour Period.

E:,,:amP 1 ,es

TIME
DisPlaYs the current date and time.

TIME 13. 211l.11ll1l
Resets the time to 1:20:00 Pm.

TIME' 18. 24
Rasats tha tima to 6•24:11)11) Pm.

Note: Periods are ·used instead of the customary colons since Peribds
are easier to tvPe in--vou don't have to Press SHIFT •

MODEL II TRSDOS COMMANDS

VERIFY
Automatic Raad Aftar Writa

:------------------------·-----------------------------------:
VERIFY {switch)

~.wi tcJ-!. is one 1:if the fol 1 owin~~:
ON Turn on the verify function.
OFF Turn off the verify function~

If suJit,~_b is omitted, the cur-r-ent status is disPlaYed
and is left unchan9ed.

:------------------·--·----,---------·--•---------------------------------,,-:

PA(:iE 68

This command controls the verify function. When it is on, TRSDOS
wi 11 r·ead aft'l:'r· each wr·ite oPer·ation, tc1 v'l:.'r·ifv tha.t the data is
readable .. If the data is not readable after retries, TRSDOS will
return an error messa9e, so you'll know that the operation was not
succes-~-ful ..

Note: TRSDOS alu1avs ver1t1es directory writes. User writes <writin9
data into a file) are only verified when VERIFY is ONa

l"RSDOS starts UP with VERIFY ON. For most applications, vou should
laa.v,a it 01\1.

ExamP1es

VERIFY ON
Turns on the verifv function.

VEFUFY OFF
Turns off the ver·ifv function.

VERIFY
DisPlavs the status of the verify switch.

•

•

•

•

M O D E L I I T R 8 D O S

3 / U T l L I T Y P R O 6 R A M 8

•

•

•

•

•

MODEL. II TRSDOS UTILITY PROGRAMS PAGE 69

(M:2DOS4 8/6/79)

3 / Utilitv Pro9rams

TRSDOS includes two utility Pro9rams, BACKUP and FORMAT.

Before any disk can be used to store information, it must be
formattedn Use FORMAT to Prepare a new (blank) diskette, or the
"start fresh 11 with a Previously formatted diskette.

Use BACKUP to COPY all the information on a diskette onto another
diskette. This 9ives vou safe coPies of imPortant data and Pro9rams.
BE SURE TO MAKE A BACKUP COPY OF YOUR SYSTEM DISK--before You be9in
using the Svstem.

Both utilities can be used in anv Model II Svstem-·-sin9le or
multiPle drive. Both use all available memorv, but do not overlav
the resident Svstem. Initialization values (time, date, Pr·inter
Parameters, etc.) are intact upon return from either utilitv •

MODEL I I TF:f.;DOE\ COMMANDE

Bt-1C~<UP·

DuPlicate a Diskette

·--·------------·-·--·-----------:
This Pro9ram duPlicates the data from a (iiskette onto another
for-matted diskette, by COFYir19 all allocated 9ranulesu

To exec~Jte BACKUP, tYPe
E',,\Cf,UP

PAGE 70

BACKUP Pr·ovides all r1ecessar·Y Pr·omPtir19 for inPutu The destination
di::.!:t~tt~~ rr1u:::.t be f,:ir-ma.tt,.__~d; if it cont(-:1.ins d•a.t,:1, 13/.\Cl·\UP wi 1 ·1 w::1r·n
vou and ask if YOU want to write over the data~

PromPtin9 Messa9es

:=,ou1:icE DHIVE''.?
l'ype in the number of the dr·ive whict1 u1ill contain the sour·ce
diskette (diskette to be duplicated). This can be anv drive 0
thr·ouS.th 3~

SOURCE DISK PASSWORD?
TYPe irr tt,e F>asswor·d, up to 8 number·s or· letter·s, and Press ENTER if
YOU tYPed fewer than Bu

DESTINATION DRIVE7
1·ype in the number· of the dr·ive uit1ict1 uiill contain the destination
diskette~ This (:an be anv drive 0 throlJ9h 3~

DO YOU WANT TO CHANGE DISK INFORMATION?
TYPe V it YO~J itlant to chan9e the master Password, diskette name, or
date. BACKUP will PPOmF~t YOU tc1 er1ter· the new info~matior1 (If vou
don 7 t want to chan9e anv of these~ type N.):

1·0 chan9e t~1e Passwor·d, tYPe in UP to 8 r1umt1er-s and
letters, and Pr~ess EN'fER if You tYPed fe1oer than Ba

1·0 ct1ar,9e the diskette r·1ame~ tYPe ir1 llP to 8 nun1ber·s arid
letter~s and Pr·ess EN"rER if YO~J tYPed fewer than Su

cESTINATION DISK READY? Insert the destination diskette into the
destinatior1 drive and tYPe Y.

.u1==-:::., ·y·(11.1 wi -1 ·1 n-t~~~d -l:i::1 :.-:.t.Ui:::lP Note: For sin9le-dPive bac!
destir,ation diskettes wt1en

80\JRCE l)ISK READY? and
Prompted t1Y the n1essa9es~

DESTINATION DISK HEADV7

•

•

•

..

•

-

MODEL II TRSDOS UTILITY PROGRAMS PAGE 71

If there is• flaw on one of the destination tracks, BACKUP will
terminate and return to TRSDOS without completing the duPlication.
The flawed diskette should be re-formatted and used as a data
diskette !multi-drive users onlYl.

BACKUP also does• consistency check of the directory track,
comparin9 individual file entries with a separate table of sPace
allocation. If any inconsistencies are found, BACKUP lists the
affected files and Prompts vou to choose one of the following
i;:ipt ion~-:

<1> Copy onlv those files whose allocation
information is consistentA

<~~>
<3>

COPY all files, re9ard1ess of inconsistencies.
Abort the backuP Procedure.

Files with inconsistencies rnav or may not be usable •

MODEL II THSDOS

FOf<MAT
Or9anize a Diskette

:--------------------·-------·--·-----------· . #/,."""n. !PA.S'C l'.ft;-ti,:./1,,;'•
FORMAT :~{ID=disk name, PW=Password, 0Ption} :

:d specifies the dr·ive to be used. 1·he colon ~ is
oPtional. d can be sPecifiy anY drive 0 throl19h 3.

ID:::::di.r:.:.k na.me t;;..11 s TRSDOS wh.::;.t to a.::.si<::Jn.
disk name can be UP to 8 nlJmbers and letters with

no embedded blank sPacesd
PW=password tells TRSDOS 1uhat Password to assi9n.

Password can be UP to 8 r1umber·s or· letters uiith
no embedded blank spaces.

oPtion tells TRSDOS how muct1 verifvin9 to do~
FULL Thorou9h check for flaws.
GlU I Cl•-(
NOI\IE

@uick check for flaws.
No checking for flaws.

This Pro9ram or9anizes a (jiskette into tracks and sectors. The
diskette maY be either blank (new or· bulk-·er·ased) or Pr·eviously
formatted. If it contains data, FORMA·r will warn you and ask if you
u,ant to contir,ue. If You continue, the data will be lost. In
9eneral, it,s a 9ood ,~ractice to bulk erase a diskette before
f(1r·ma.ttin9 it.

Format also does a specified amount of ct1eckin9 for· ar·eas on the
disk which cannot store data due to flaws in the recordin9 surfacen
If it finds a flawed ar·ea, TRSDOS 11 locks out 11 the affected track and
will never trv to write to that tr·ack.

FOf<MAT •1 11D=ACCOUNTS,PW=mousel
Dr·ive 1 wi ·11 be u:=.1:.·d, ;::1.nd th-:.':? di'.::-k ,~Ji 11
and master Passwor·d rr1ouse. TRSDOS will

be given the name ACCO\JNTS
do the full test for· flaws.

FOHMAT •0 (ID=TESTDISK,PW=PASSWOHD,QUICKl
Drivt.~ 0 wi 11 b-e .. u:=.E,d, and the di.:..k wi 11 b-e S:Jivt•n the na.me "l"ESTDifH·\
an(i master PasstDord PASSWORD. FORMAT will do a quick for flawsn

FOHMAT :3 11D=Jack, PW=12345678, NONE)
Dr·ive 3. will b:;;.~ u:::.f::d, di'.:.k no:1rn,z~ 1.Ta.ck, Fa.::.:~·.11Jor·d 1:;;;:3~'.~~}/3)'1'.3,, IDith no
checking for flaws.

Wh,en to FOl~MAT

To rrePare a new diskette~
Befor·e You can use a r,ew diskette, YOU must for·mat it. After
formatting~ record the disk name, date of creation and Password in a
safe Place. This will helP You estirr1ate how lon9 a diskette has been
in use, and Prevent Your for9ettin9 the master Password. (For lJses

•

..

MODEL II TRSDOS UTILITY PROGRAMS PAGE 73

•- this ol'U~Plicatior1, a1wa.vs u;:.~ th~ FULL verify 1:iPtion ..

•

-

To erase all data from a diskette.
To 0 start over" with a diskette, you can format it. All data will be
lost. For this aPPlication, the QUICK verify option is probably
~de~uate--unless vou hava had Probl~ms disk inPut/outPut errors with
the dis-kette. (Si!e bei ow.)

To lock out flawed areas«
After lon9 use, flaws mav develop on a diskette~ Reformat the
diskette to lock out these tracks while leavin9 the 9ood tracks
available for data stora9e. Use the FULL verify option for this
ii:f.pf:i.1 icati<:ir1 ..

•

M O D E L I I T R S D O S

4 / T E C H N I C A L I N F O R M A T I O N

•

•

•

•

•

MODEL I I T RBDOE< TECHNICAL INFORMATION

(M2DOS5 8/10/79)

::) / Tt!chnica.l Infor-mation

CONTENT!3
=========~=~===~================================
0 .. Introduction 75
1. Diskette Or9anizatior, ••.•.......••..... 76
2. Disk Fi'l,e,s .••••••••••••••••••••••••••••• Tl

2.1 Methods of File Allocation ••••••••• 77
2.2 l'l,ecor·d Lc,n,.ith 7ll
2.3 Record Processin9 Capabilities ••••.

3. How to use the Supervisor Cal-ls ••••....
3.1 Callin9 Pr-ocedur-e ••••••••••••••••••
3.2 Error Codes and Messa9es ••.•..••..•

4. Supervisor· Calls ..••..•....•..•........
4.1 Svstem Control •••....•••.••••••..•.
L~ .. ::;~ ~(e·)··bi::1ar·d
1.1,.;3 Video l)isi::i•l;,3_ .. { ,,
L1, • .it
1. ~~­

+" . .J

L.ine Pr·in-\:f.1r· nn

F':i.1-::7! i<-\CC\7!'.::'-S

L~ .. 6 Con1Puta.tioni:Ll,
4 .. 7 Serial Communications

5 .. Pro9r·amrnin9 with TRSDOS

B0
i3:?
B3
8'>
(36

l37
9E)

102
11 L,.
11B
129
11.:;2
14-9

5 .. 1 Pro9ram Entry Conditions 149
5 .. 2 Handlin9 Pro9rammed Inter·ruPts 149

---------------------~================~~~~~=:--=====

!fj.. I ntr·oduct ion
== == == == ~= :::: == ::=: = ~= ::::: :~= ::~ ::::: :::;:

1·his chapter 9ives a Pr·actical descriF>tion of TRSDOS on a technical
level .. You do not need it to use the Operator Commands, nor do You
need it to run BASIC aPPlications Pro9rams on the Computer. You DO
need it to write assembly Pro9rams which use SYstem ro,Jtines .. You
uiav also- find the information incidentally useful in Pro9rarnIT1in9
wi-1:h Bt,SIC.

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 76

1. Diskette Or9anization

Model II uses sin9le-sided, double-density diskettes. Each diskette
contains 77 tracks, numbered 0-76~

Each track contains 26 sectors, numbered 1-26. Each sector contains
256 bytes, except for track 0 sectors, which contain 128 bvtesA The
total caPacitv of a diskette is:

176 * 26 * 2561 + 11 * 26 * 1281 = 509,184 bvtes.

Disk SPace Available to User

Sector 26 of each track is reserved for svstem use, 9ivin9 the user
25 sectors Per track. On Svstem diskettes, 65 tracks are available
for the user; on non-Svstem diskettes, 75 tracks are available.

Detail :e.:
Track 0 is reserved bv the Svstem. It
Another track Cusuallv track 441 is
Svstem for the diskette directorv.
diskettes, ten additional tracks are

Unit of Allocation

is not accessible.
reserved by the

On 0Per·atin9 Svstem
used for Svstem files"

The onlv unit of disk space allocation is the 11 9ranule". A TRSDOS
9ranule is defined as 5 sectors. Therefore the smallest non-emPtY
file ,:or,'.:-i'.:-ts •:•f 5 sector·s, i .. e .. , one 9r·ar1ule.

NON-SYSTEM
DISf<ETTE

1

TRACf<S

75
1

GRANULES

375
5
1

SECTORS

1875
25
5
1

SPACE AVAILABLE TO USER

BYTES

480,000
6400
1280
2'.56

•

•

•

•

•

•

MODEL II Tf<SDOS TECHNICAL INFORMATION PAGE 77

2. Disk Fi l,;,s
:::::::=============
2.1 Methods of Fila Allocation

Model II Provides two wavs to allocate disk space for files: Dvnamic
Allocation and Pre-Allocationft

Dvnamic Allocaton

With DYnamic Allocation, the BYstem allocates 9ranules only at the
tima of writa. For axamPle, when a file is first 0Pened for outPut,
no space is allocated. The first space allocation is done at the
first write. Additional SPace is added as required bv subsequent
writes.

With dYnamicallY allocated files, unused 9ranules are de-allocated
(~ecovered} when the file is Closed»

Pr·e-Al locatic,r,

With P~e-allocation, the file is allocated a specified number of
9ranules when it is created. Pre-allocated files can only be created
by the operator command CREATE.

TRSDOS will dYnamicallY extend Cenlar9el a Pre-allocated file as
needed for subsequent write operations. However, TRSDOS will not
de-allocate unu~ed 9ranules when a Pre-allocated file is Closed. The
wav to reduce the size of a Pre-allocat~d file is to Copy it to•
smaller pre-allocated file or to a dYnamicallY allocated file and
Kill the old file •

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 78

The Model II transfers data to and from diskettes one sector at a
time, i .. e., in :256-b·-.··t~ blocks .. These ar·e the Svs.i:i?m"s. 11 Ph·y·sic~~1 11

recor·ds ..

User records or nlo9ical 11 ~ecords are the buffers of data vou wish
to transfer to or from a file. These can be from 1 to 256 bvtes
l,:'.lrs9.

TRSDOS will automatica11Y ublock 11 vour lo9ical records into Phvsical
records which will be transferred to disk, and 11 deblock 11 the
Phvsical records into 1o9ica1 records which are used bv vour
Pro9ram. Therefore vour ONLY concern durin9 file access is with
lo9ica1 recordsu You never need to worrv about Phvsical records,
sectors, tracks, etc. This is to vour benefit, since Phvsical record
lengths and features mav chan9e in later TRSDOS versions, while the
concePt of lo9ical reco~ds will not.

From this Point on, the term 1'recor·d 1
' refers to a ulo9ica1 r·ecord 11

•

SPar,ri i rig

If the record 1en9th is not an even diviso~ of 256, the records will
automatically be spanned across sectors.

For examPle, if the ~ecord 1en9th is 200, Sectors 1 and 2 will look
like this:

: -----------SECTOR 1 ··-----: -•-----·--SECTOR 2---·-·····---···-·:

=<-record 1--> <-------record 2-------> <-------record 3---­
=< 200 bvtes > < 56 bvtes> < 144 bvtes > < 112 bytes:>=

'
Sector 3 (not shown) contain~ the last 82 bvtes of r·ecord 3R

Fixed-Length and Variable Len9th Records

Mod• l II fil • s can hav• • ith• r fixed-1 • n9th or variab1e-len9th
records. Files with fixed-len9th records will be refer~ed to as
FLRsl fil • s with variable l • n9th r • cords, VLRs.

Record len9th in an FLR file is set when the file is OPened for the
first time. This l • n9th can be anv valu• from 1 to 256 bvtes. Once
$et, the record 1en9th in an FLR cannot be chan9ed, unless the file
is being over-written with new datau

Record l • n9th in a VLR fil • is specified in a one-bvte 1• n9th-field
at the be9innin9 of each record~ The record-len9ths in a VLR file
can varY~ For example, the first record in a file mi9ht have a

•

•

•

•

•

•

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 79

1en9th of 32, the second, 171 the third, 2501 etc.

The record-lenath bvta indicates the entire 1en9th of the record,
INCLUDING th<!e l,H19th-t:rr't<!e. This can be anY value fr·om IZI t,:, 255. A
value of 1 can be used, but it has no meanin9.

ExarrrP 1 e ~-:
A len9th-bvte value of zero indicates that the record contains 255
b•y·tes of data.:
:------:-------------------:

0 : 255 bytes of data:
:------:-------------------:

LENGTH
BYTE

DATA

End
of
R~ci:tr·d

A 1en9th-bvta value of 2 indicates that the record contains 1 bvte
of data: : -------: _______ ,_, __________ :

2 : one bvte of data: : ------: ______________ ,. _____ ::

LENGTH
BYTE

DATA

End
i:,t
Recor·d

A len9th-bvte value of 16 indicates that the record contains 15

:------:-------------------:
: 16 : 15 bvtes of data:
:------:------------------:

LENGTH
BYTE

DATA

End
(,f
R-<:<cor·d

MODEL II TRSDC>S TECHNICAL INFORMATION PAGE 80

2~3 Record Processing CaPabilities

Modal JI TRSDOB allows both Direct and Sa9uantial file access,
Direct access--sometimes called 1'random access•5 but •directa is
more descriPtive--allows YOU to Process anv record vou sPecifv~

NOTE
A file can contain UP to 65535 ~ecords,.
Records are numbered from 0 lbe9innin9 of file)
to 65534. A record number of 65535 indicates
the and of file IEOFI. These limits will be chan9ad
in a later release of TRSDOS.

Sequential access allows vou to Process r·ecords in se~uence: Reco~d
N, N+1, N+2,~-·· With sequential access, vou do not specify a record
number; instead, the 0Peratin9 System accesses the next record after
th~ c:ur·rent one,.

For files with Fixed Len9th Records <FLRs), vou can Position th•
current- record Pointer to the be9innin9 of the file, end of file, or
to anv record in the file. In sho~t, YOU can use Di~ect and/or
Sequential Access with FLRs at anv time during Processin9~

•

For- files with var·iable len9th rtfcor·d~- (VLRs), ·-.·t:ttJ can i::ir11y· Pos.ition ·-
the current record PointEr to the be9innin9 of the file or to the
end of file. You cannot Position to anv other record in the file,
since the Position of interior VLRs cannot be calculated~ If short,
vou can only use Se~uentia1 access with VLRs.

The Direct access routines are Direct-Read and Direct-Write; the
Se~uential access routines are Read-Next and Write-Next. Direct·
access routines always access the record YOU sPecifv. Sequential
access routines alwavs access the record FOLLOWING th• last r • cord
Processed. (When the file is first opened, sequential Processing
starts with record 0.1

Assume vou have a Fixed LenQth Record file currently 0Pen. Here are
some tYPical se9uences YOU can accomplish via the file Processing
routines"

l~Read and/or write records in the file--in anv order

This is done using Direct-Write and Dir·ect-Read routines~ You could
read record 5, write at end of file, read record 3, write record 3,
etc ..

2. Sequential Read (or Write) be9innin9 anvwhere in the file ..

First You would do a Direct-Read to the record whe~• YOU want
start re6din9 or writing. After that, You would do se9uential
or ~Jrites until done-

to
r·eads •

..

-•· .

•

MODEL TI TRSDOS TECHNICAL INFORMATION PAGE 81

3. Se9uential Write starting at end of file.

First do a Direct-Write to the end of file. Then do S89Uential
writes until done.

4~ Determine the number of records in a file.

First do a direct-read to end of file, then use the LOCATE routine
to 9et the current record number, which now equals <number of
r-ecor·ds) + 1 u

Examples with Variable Len9th Records

1. 8e9uential Write startin9 at end of file.

First do a Direct-Write to the end of file, Then do se9uential
writes until done.

2. Start reading or writin9 at first record
------·--·---·---·--·---··-··------··-------
0Pe n the file Qnd start reQdin9 or writin9 sequentiallv until done.

Note: Writing to a VLR file AUTOMATICALLY resets the end-of-file to
the last recor·d vou writen This means vou cannot update a VLR file
directly; vou must read in the file and output the updated
information to a new VLR file .

MODEL II TliSDOS TECHNICAL II\IFOliMATION PAGE 82

3. How to Use the BuPervisor Calls

Supervisor Calls (SVC's) are OPeratin9 Svstem routines availabl~ to
anv user Pro9ram~ The routines alter certain System functions and
conditior,s; P~ovide file access; Perform I/O to the Kevboar·d, Video
DisPlav, and Printe~; and Perform various computations

All the SVCs leave rnemorv above X'2FFF' untouchedM Onlv those Z-80
re9isters used to Pass Parameters from the SVC are altered. All
others are unaffected~ However, all the Prime re9isters are us~d bv
the Svstem; thev are not ~estored~

Each SVC is assi9ned a Function Code. 1'hese codes run from 0 throu9h
127. Onlv the first 96 are defined bv the Svsteml codes 96-127 are
available for user definition.

To specify a 9iven SuPervisor Call, vour Pro9ram refers to the svc~s
Function Cc1 de ~

..

•

•

•

•

•

MODEL. II TRSDOS TECHNICAL. INFORMATION

3.1 Callin9 Procedure

All SVCs are accomPlished via the RST 8 instruction ..

la Load the Function Code for the desired SVC into the A
re9ister. Also load anv other re9isters which are needed
bv the SVC, as detailed in Section 4.

2. Execute a RST 8 instruction

3. Upon return from the SVC, the Z flag will be set if
the function was successful. If the Z fla9 is not set,
there was an error. The A register contains the
aPProPriate error code (except after certain computational
SVC,s, which use the A-re9ister to return other
infor-mation) ..

E:,,amP le s

Time-Dela·y·
L.D BC,TIMCNT LENGTH OF DEL.AV
LO A,6 FUNCTION CODE 6 -- DELAY-SVC
RST 8 JUMP TO SVC

DELAY OVER-PROGRAM CONTINUES HERE

Output a line to the Video Dis.Pl av

MSG

LD HL,MSG
LO 8,10
LD C,l.?JDH
LD A,9
HST 8
JR NZ,GOTEHR

IF NO ERROR THEN PROGRAM
DEFM 'TEN BYTES'

POINT TO THE MESSAGE
B=CHARACTER COUNT
C=CTRL CHAR. TO ADD AT END
CODE 9 = DISPLAY LINE-·SVC
JUMP TO SVC
JUMP IF 1/0

CONTINUES HEHE
ERHOH

Get a character from the Kevboard
GETCHAH L.D A,4 CODE 4 = GET CHARACTER-·SVC

JUMP TO SVC RST 8
,H, NZ, GET CHAR

CHARACTER IS IN HEGISTER 8
DO AGAIN IF NO CHARACTEH

PAGE 83

MODEL II TRSDOS TECHNICAL INFORMATION PAGE Blf

3.2 Error Codes and Messa9es

Re9ister A usuallv contains a return code after anv function call,
with the Z fla9 set when no error occurredu Exceptions are certain
computational routines, which use the A and F to Pass back data and
status information.

•

•

•

NODEL II TRSDOS TECHNICAL INFORMATION PAGE 85

,. List of Er-r-or- Cod.,;s arid Me~.;e.a9es

•

•

Ill
1
2
3
4
5
6
7
8
9

111)
11
12
13
14
15
16
17
18
19
20
21
22
23
:~"::'+
L.'5
26
'27
28
£:.'9
30
31
32
33
34
35
36
37
:m
39
40
lf 1
4:2
43
44
it~5

'+6
lf7

48
49
511)

NO ERROR FOUND
BAD FUNCTION CODE ON S',)C CALL. OR NO FU~lCTION EXISTS
CHARACTER NOT AVAILABLE
PARAMETER ERROR ON CALL
CHC ERROR D\JRINi:i DISK I /0 OPERATIOI\I
DISK SECTOR I\IOT FOUND
ATTEMPT TO OPEN A FILE WHICH HAS NOT BEEN CLOSED
DRIVE DOOR WAS OPENED WHILE FILE OPEN FOR WRITE
Dif3K DRIVE NOT flEADY
INVALID DATA PROVIDED BY CALLER
MAXIMUM OF 16 FILES MAY BE OPEN AT ONCE
FILE AL.READY IN DIRECTORY
NO DRIVE iWAILABLE FOR AN OPEN
WRITE ATTEMPT TO A HEAD ONLY FILE
WRITE FAULT ON DISf<: 1/0
DISK IS t,JRITE PROTECTED
DCB IS MODIFIED AND IS UNUSABLE
DIRECTORY READ ERROR
DIRECTORY i,JRITE ERROR
IMPROPER FILE NAME lfilesPacl
FAD READ Emwr,
FAD WRITE ERROR
FID liEAD ErmoR
FID WRITE ERROR
FILE NOT FOUND
FILE ACCESS DENIED DUE TO PASSWORD PROTECTION
DH,ECTORY SPACE FULL
DI Sf'(SPACE F\JLL
ATTEMPT TO READ PAST EOF
READ ATTEMPT OUTSIDE (lF FILE LIMITS
NO MORE EXTENTS AVAILABLE (16 MAXIMUM)
PROGRAM NOT FOUND
UNKNOWN DRIVE NUMBER (til<esFec)
DISK SPACE ALLOCA'rION CANNOT BE MADE DUE TO FRAGMENTATION OF SPACE
ATTEMPT TO USE A NON PROGRAM FILE AS A PROGRAM
MEMOFlY FAULT DllR I NG PROGRAM LOAD
PARAMETER FOl'l QPEN IS INCORRECT
OPEN ATTEMPT FOR A FILE ALREADY OPEN
1/0 ATTEMPT TO AN UNOPEN FILE
ILLEGAL. I/0 ATTEMPT
SEE}\ ERROR
DATA LOST DURING Dim< 1/0 < Ht1RDWARE FAULT)
PFUNTEl-< NOT RE1\DY
PRINTER OUT OF PAPER
PRINTER FAULT (MAY BE T\JflNED OFF)
PRINTER NOT AVAILAE•L.E
NOT APPLICABLE TO VLR TYPE FILES
REQUIRED COMMAND PARAMETER NOT FOUND
INCORRECT COMM,\ND PARAMETER
* * UNltNO!,JN ERROR CODE * *
* * UNKNO!,JN EHROR GODE * *

MODEL II TRSDOS TECHNICAL INFOFlMATION

(M:2D086 8/6/79)

4~ SuPerviso~ Calls

In this section we will use the following notatior1:

Notation

FIP = data
n1 < R < n2

(RP)= data

N:Z => Er·r·,:,r·

M-2arrin9

The register Pair RP contains the datQ~
The re9ister R contains a value 9reater

than nl and less than n2
The re9ister pair RP contains the

address of (»points to 11
) the data~

If Z Fla9 is not set, an erro~
occur·red.

PAGE 86

•

•

.,

•

•

•

MODEL II TRSDOS TECHNICAL INFORMATION

4.1 Svstam Control

BuParvisor calls dascribad in this section:

F•Jnct ion
Cr.,de

11)

2
3

15
:LS
36
37

3B

39
52

Name

INITIO
SETUSR
SETBRf{
DISKID
TIMER
JP2DOS
DOSCMD

RETCMD

ERROR
ERRMSG

P1;r·Pos.e

Initializes all I/0 drivers
Bats UP a user-defined SVC
Sets UP <BREAK) kav Processing Pro9ram
Reads a diskette ID
Set timer to interrupt a Pro9or~m
R•tur·r,s. to TRSDOB (TRSDOS HEADY)
Sands TRSDOS a command and than returns
tr., TRSDOS READY
Sands TRSDOS a command and return to
caller·
DisPlavs "ERROR number"
Returns Erro~ Messa9e to Buffer

PAGE 87

i"IODEL II TRSDOS TECHNICAL INFORMATION PAGE 88

INITIO ("Initialize I/O 11)--Function Code 0

This. routine initia.l izes. all input/output driver·: ... It cal 1~- a.l l of
the other initialization routines. There are no Parameters.

NOTE
This routine has been done alreadv bv the Svstem.
User·s shou·ld never· call it, e:=<cePt l.n e>~tr·eme
error conditions.

Entr·Y Condition::.

A ll)

E::-::it Conditions.

NZ
A

=> Er-r·or·
Er-r·i:1r- Cod{::.,

-•

•

•

•
MODEL I I TRSDC>S TECHNICAL. INFORMATION PAGE 89

SETUSR l"Bet User") Function Code 2

This ~outine sets or removes a user vector. This 9ives vou the
abilitv to add SVC functions~ Function codes 96-127 are available
for user definitionM

Once added, such a function can then b~ called via the RST 8
inst~uction, Just like the 8Ystem 1 s SVC routines.

Your routine must rasida abova X'27FF", and should and with a RETurn
i n:::.tr·uct i 1:in ..

To chan9e a Previouslv defined function, vou must first remove the
old v-r1ct(,r· ..

IHLl - Entry address of Your routine lwhan C not 0)
B = Function code to be used, 95 <code< 128
C = Bet/Resat coda, If C•0, ramova tha vector. Otherwise,

add the Vt:.'ctor
A -· 2

• E>::it Conditions.

CHL) = Removed vactor address (whan C=0 on entry)

•

MODEL II THSDOS TECHNICAL INFOHMATION PA6E 90

SETBRK ("Set <BREAK>"l--Function Code 3

This routine lets vou enable the <BREAK> kev by definin9 a
<BREAK>-kev Pr·ocessin9 Pro9r·am. Wt1enever <BREAK> is Pressed, vour­
Processin9 Pro9ram takes overu On entry to the <BREAK> Processin9
Pro9ram, the r·eturn address of the interrupted routine is on the top
of the stack and can be returned to with a RETurn instructionu All
of the re9isters are intact upon entrv to the routine.

The routine also lets vou disable the <BREAK> kev, bv removing the
address of the Processing Pro9ram. While <BREAK> is enabled, vou
cannot chan9e Processin9 Pro9rams; vou must disable it first.

The <BREAK> kev Processing Pro9rarn must reside above X'27FF'.

See Handlin9 Pro9rammed Interrupts for Pro9rammin9 information.

Entr··y· Condition::.

(HL) = Address of <BREAK> kev Processing Pr·o9r·ama When <BREAK>
is Pressed, control transfers to this address.
If HL = 0, then address of Previous Processing Pro9ram
is r·emove d.

A = 3

E::-::it Conditions

NZ=>
A =

(HL) =

Err,:ir·
Er·r·or· Code
Addr·e~-~- of
if HL = 0 on entry

<BREAK> key Processin9 Pr·o9ram

•

•

•

•

•

•

MODEL.. II TRSDOS TECHNICAL.. INFORMATION PAGE 91

DIBKID--Function Code 15

This routine reads the Diskette ID from anv or all of drives 0
throu9h 3. (The Diskette ID is assi9ned bv the FORMAT and BACKUP
utilities.) This routine is useful when the Pro9ram needs to ensure
that the Operator has inserted the Proper diskette.

B - Drive Select Code. If B = 0, read from drive 0, etc.
t~. must be one of the following: 0, 1, 2, 3, i::•r· 255 .. If
B ~ 255, then routine reads from all four drives.

IHL..l - Buffer to hold the diskette IDl'sl.
If B = 0, 1, 2 or 3, then buffer must be 8-bvtes lon9.
If B • 255, then buffer must be 32 bvtes lon9. Drive 0
ID u,i 11 be Placed in fir-s.t 8 bytes., then dr·ive 1, etc.

A • 15

The Diskette ID('s) are Placed in the buffer·s pointed to by
re9ister-Pair HL~ If a drive is not readv, blanks are Placed into
the buffer· ..

NZ •> Er·r-or·
A = E:r-r·or- Code

PAGE 92

TIMEH
F1~1nc ti on Ci;:,d,e 25

lhis routine lets You $tart a timer to ir,ter·ruPt a Pr·o9ram when time
run& outff lJnlike the DELAY routine, TIM~R runs concu~rent with vour
Pro9ram~ One aPPlication would be to 9ive an oPer·ator a specified
number of seconds for kevboard input~ and to interrupt the k4vboard
inPut r·outine if no inPut was made within the time limit.

When settin9 the timer, you tell it how many seconds to count down.
TRSDOS will then continue executin9 vour pr•ogram, until the timer
counts down to zero or vou reset the timer~

This is a "on~-shot 11 timer. When it counts to zero and causes an
interrupt, it automatically shuts off~

See Pr·o9rammin9 with TRSDOS for information on interrupts.

(HL) = Routine to handle inter·ruPt when tim~r
co1,.1nt:::~ to z~:r·o ..

BC NumbQr crf seconds to count do~,n.
A ::: 25

If HL and BC tioth equal zero, then timer is turned off.
If HL = 0 and BC is not equal to zero, than time count is reset to
the value in BC, and timing continues~

•

•

•

•

•

•

MODEL II TRSDOS TECHNICAL INFOl~MATION PAGE 93

JP2DOS ("Jump to DOS")--Function 36

1'his Pro9ram simPlY returns control to the command level CTRSDOS
READY). All (!pen files are Closed automaticallv.

Entr·Y Conditii::ir1s.

A= 36

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 94

DOSCMD (11 DOS Command 11)--Function Code 37

This routine sends ·rRSDOS a command. After the command is executed,
control returns to TRSDOS ITRSDOS READY). All (>pen files are closed
automatically.

Entr·Y Conditions.

TRSDOS (HL..) =
8 = Len9th

= 37 A

c omma.nd ~- t: r· i n9
of command st~in9

•

•

•

•

•

•

MODEL II TRSDOS TECHNICAL. INFORMATION PAGE 95

RETCMD (11 Return after Command")--Function Code 38

This routine sends TRSDOS an operator command. After completion of
the command, control returns to vour Pro9ram. All Qpen files are
Closed automaticallv.

NOTE
Take care that TRSDOS doesn't overlav vour Pro9ram
while loadin9 the command file vou specified. Most
TRSDOS library commands use memorv below X'27FF'; a
few 9o UP to but not includin9 X'2FFF'. Sin9le-drive,
sin9le-disk coPies use all user memorv. See Library
Commands for details.

Entry Conditions

TRSDOS command s.tr· i n9 (HLJ =
e. = L<2 r,g th

:::: 38 A
of command strin9

E::<it Conditions

NZ
A

:::::) Er·r·or·
Er·r-1:ir· Code

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 96

ERROR--Function Code 39

This routine disPlavs the messa9e "ERROR" followed bv the specified
error code~ The messa9e appears at the current cursor Position~

Entr·Y C,:inditions

B = Error Code
A= 39

E::.::1t Condition!:-

NZ -· Er·r·c,r·
A = Err·or Ci:1de

•

•

•

•

•

•

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 97

ERRMBG ('Error Messa9e")--Function Code 52

This routine returns an 80-bYte descriPtive error messa9e to the
specified buffe~ arean (See list of error messa9es, Section 3.2.)

Entrv Conditions

B =
(HL) ~

A =

Error Code corresPondin9 to message
80-bvte buffer area in user area (above X'27FF'l
52

NZ= Error
A ~ Er·r·or· Code

i"IODEL I I TFlSDOS TECHNICAL I NFORMA"rlON

Supervisor· calls described in this section*:

F1Jnction
Code Name Pu~Pose

1
4
5

12

KBINIT
f<:BCHAR
f,BL INE
VIDl'(EY

Cl•ars stored k•vstrokes.
Gets a cha~act@r from kevboardQ
Gets a line from keyboard.
DisPlav messa9e and 9et line from KB~

•VIDKEY is described in Section 4.3.

PAGE 98

•

•

•

•

•

•

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 99

KBINIT ("Kevboard Initialize")--Function Code 1

This routine initializes the kevboard inPut driver. This call should
be made before vou start kevboard inPut. It clears all Previou~
ke·..-·s. t r-,:ikes ...

Entr···t Conditions-

A = 1

E>=:it Conditions-

NZ => Er·ror·
A = Er·r·or· Code

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 111ll1l

KBCHAR l"KeYboard Character")--Function Code 4

This ~outine 9•ts one character from the kevboard. The ~outine
returns immediatelv either with or without a character in re9iste~
B.

The <BREAK> key is masked from the user--it will never be returned,
since it is intercepted bY the Svstem. If the <BREAK> key is
en~bled, control Passes to the Processing Pro9rarn (see SETBRK)
wh;,,never· <BREAK> i~- r->r·essed. Other·wise, <BREAK> is i9nor•;,,d.

A = 4

Exit Conditions

B = Character found, if anv. Only codes within the ran9e
<0,127> can be returned. If no character is returned,
B i"· unchanged.

NZ=> No character Present
A = E:rr·c,r· C.:1de

•

•

•

•
MODEL II TRSDOS TECHNICAL INFORMATION PAGE 101

!\BLINE ("KeYboar·d Lin;;,•)--Function Code 5

This routin• inPuts a line from the Keyboard into a buffer, and
echoes the line to the DisPlav, starting at the current cursor
position. As each character is rec•ived and disPlaved, the cursor
advances to the next Position (Scroll Mode--see section 4.3.)

On entrv to this ~outine, the inPut buffer is filled with Periods,
and these Periods appear on the disPlaY, indicating the 1en9th of
the inPut field for the oPerator 7 S convenience~

The line ends when a carria9e return is tvPed or when the inPut
buffer is filled. A carriage return is always sent to the DisPlav
upon termination of line inPut, but is stored onlv if the 0Perator
actually Pressed <ENTER>.

Entr···{ Conditions

(HL) =
B

Start of inPut buffer

A

= Maximum
0 < B

= 5

numb,er• to r·eceive,

• E>~it Conditions

•

B - Actual number of characters inPut, including carriage
r·etur·n.

C = i1l if inPut buffer was filled without carria9e return.
If line ended with a carriage return, then C z X'I/JD'.

Received Control Codes, C(,dl? < 32

Control codes not listed below are Placed in the buffer and
represented on the disPlaY with +/- svmbols

KEY

<-

->

<ENTER>

<CTRL-W>

<CTRL-X>

<ESC>

HEX
CODE

I/J8

(1)9

11lD

17

18

18

FUNCTION

Backspaces the cursor to allow editing of
lineff Does not eras~ characters.
Advances the cursor to allow editin9 of
line. Does not eras@ characte~s.
Terminates line. Clears trailin9 P• riods
on disPlav but not in buffer.
Fills remainder of inPut buffer with
blanks, blanks remainder of DisPlaY line.
Fills remainder of inPut buffer with
blanks, blanks to end of DisPlaY.
Reinitializes inPut function bv fillir.9
inPut buffer with Periods and restoring
curso~ to ori9inal Positionu

MODEL. II TRSDOS TECHNICAL INFORMATION

(M2D0S7 8/6/79)

4.3 Video DisPlav

Supervisor Calls described in this section:

Function
Code Name

7 VDINIT
8 VDCHAR
9 VDLINE

10 VDGRAF

Initializes DisPlav
Sends a character, Scroll Mode
Ser1d;:. a 1 in~, Scr·<:11 l Mod€
Sends characters, GraPhics Mod~

PAGE 102

1 1
1 ~, ,.
26

VDREAD
VIDf'(EV
CURSOR

Reads characters, GraPhics Mode
DisPla·~s messa9e, and gets line from KB
Turns cursor· on or off

27 SCROLL Sets number of lines at top of disPlaY
which are not scrolled

The DisPlav has two modGs of oPeration--Scro11 and Graphics~ Cursor
motion and allowable inPut characters ar·e different in the two
modes.

Scro I 1 Mod.;.

In the Scroll Mode, the DisPlav can be thou9ht of as a sequence of
1920 disPlav Positions, as illustrated below:

Line !ZI
Line 1

Line 22
Liri.;, ;;;::i

'
'
'

0, 1, 2, 3, ..
80,81,82,83,.

1760, 1761,
1840, 1841,

78,79
• • • • . • • • 159

.1838,1839

.1919,1919

'
'

= u------------------~-=v•-•---------•------v--~-,,_ . .,_ ___ ~----~••••~• ~

DISPLAY POSITIONS, SCROLL MODE

NOTE
The DisPlav has two character sizes:
80 characters Pe~ line and 40 characters
Per lirie. The illustration above shows the
80 character Per line mode.

•

•

•

•

•

•

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 103

In the scroll mode, each time an accePtabla disPlaY character is
received, it is disPlaved at the current cursor position, and the
cursor advances to the next hi9her numbered Position.

When the cursor is on the bottom line and a line-feed or carriage
return is received, or when the bottom line is filled, the entire
DisPlaY is "scrolled 11

:

Line Ii\ is deleted
Lines 1-23 are moved UP one line
Lina 23 is blanked
The curso~ is set to the be9innin9 of line 23.

Note: From 0 to 23 lines at the disPlaY can be Protected from
scrollin9 via the SCROLL function call.

Gr·aPh i cs Mode

In the Gr·aPhic:::. Mode, the Dis.Play· c,an be thought of a::;. an 80 by 24
matrix, as illustrated belowl

C O L U M N
: ---------""~------ ___ , _________ M __________ :

: 0 1 2 • 77 78 79:
; ---H--: -------·-•-•----------------... ~--------H-H_H_,_..,H ______ :

Ii\ '
1 ' :

:
0

DISPLAY AREA
w '

: 21 !:

: 22:
23:

: -~•~---: _____ w ___,_,,_ __ -----··---------------, .. :

DISPLAY POSITIONS, GRAPHICS MODE

NOTE
The Display has two char·acter sizes:
80 char·acter-s Per 1 in• and 40 char·ac·cers.
Per line. The illustration above shows the
80 character per line mode.

Each time an acceptable disPlav character is received~ it is
diPlaYed at the current cursor Position (which is set on entrv to
the GraPhics Mode routines). Before disP1avin9 the next character,
the cursor Position is advanced, as follows:

If the cursor is to the left of Column 79, it advances to
the next column position on the same ~ow •

Jf tha cursor is at Column 79, it wraps around to Column 0
c;,,n th~ sam<:! row.

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 104

In sho~t, no scrolling is done in the GraPhics Mode.

Cursor motion works the same wav in all di~~ctions# FoP example, if
the cursor is at Row 23, Column 40, and the v (down arrow) character
is received, the cursor wraps around to Row 0 in the same column~

•

•

•

•

•

•

MODEL II TRSDOS TECHNI CAI- INFORMATION PAGE 11115

VDINIT ("Video lnitialization")--Function Coda 7

Call this initialization routine one• before starting anv 1/0 to the
DisPlav. It blanks the screen and resets the cursor to the toP left
corner, (position 1 in the Scroll Mode illustration).

B = Characters size switch. If B = 0 then sets to 40
characters/line size. Otherwise, sets to 80
chaPacte~s/line $1Ze.

C = Normal/Reverse switch. If C = 0 then sets
Reverse mode, black on white back9round. Otherwise
sets Normal mode, white on black back9round.

A -· 7

E,dt Conditions

NZ => Er·r-or·
A = Er·r·or Code

MODEL II TRSDOS TECHNICAL. INFORMATION PAGE 106

VDCHAR ('Video Charactar"l--Function Coda 8

This routine outPuts a character to the current cursor Position • It
is a Scroll Mode routine, as described above •

Received Control Codes, code< X'20'

Control Codes not listed below are i9nored •

HEX
KEY CODE FUNCTION

F1
F.2
Bf\SP

TAB

CTRL-J

ENTER
CTRL-W
CTRL-X
CTRL-Y

CTRL-Z

ESC
<-~
-.>

!I) 1
l2l'7, ·-
08

09

0A

11!D
17
18
19

1A

18
JC
:lD

C1Jr·sor 1:in,.

Cur·s.or- off ..
Moves cursor back one Position and blanks the
character at that Position.
Advances cursor to next tab Position. Tab
Positions are at 8-byte boundaries,
8,16,24,32, •.•
Line feed--cursor moves down to next row,
same column position.
Moves cursor down to be9innin9 of next linew
Erases to end of lin~, cursor doesn't move.
Erases to end of screen, cursor doesn't move.
Sets Normal Display mode (white on black).
Remains Nor·mal till reset bv Pro9rammer~
Sets Reverse DisPlav mode (black on white>~
Remains Reverse till reset bv Pro9rammer~
Era5es screen and homes cursor (position 0)~
Moves cursor back one position.
Moves cursor forward one Position~

B = ASCII code for character to be outPut to the Display;
character codes MUST be in the ran9a <0,127).

A = 8

E><it Condition:ii'.

NZ "'} Er-r·or·
A = Er·ror· Code

•

•

•

•

•

•

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 107

VDLINE ("Video Line")---Function Code 9

This routine writes a buffer of data ta the DisPlav, startin9 at the
cu~rent curso~ positionn It is a Scroll Mode routinen

rhe buffer should contain ASCII codes in th~ ran9• <©,127>.

Received Control Codes, code< X7 20,

Same as for VDCHA!l.

Entr···t Condi tic,ns

(HL) =

B -
C -
A -

Be9innin9 of buffer containing characters to b@
sent to the DisPlaY
Number of characters to be sent
End of line character. This character will be sent
to the display after the buffer text.
9

NZ => Er·r·or·
A 1'= Er·r·or· Cc1d.e

In case of an error:
B = Number of characters NOT displayed, including the

one causin9 the error
C ~ Character causing the error

UPon return, the cursor is alwavs set to the Position followin9 the
last character displayed •

MODEL II TRSDOS TECHNICAL.. INFORMATION PAGE 1.08

VDGRAF ("Video GraPhics 1')--Function Code 10

This function disPlavs a buffer of characters, startin9 at a
specified row and columna It is a GraPhics Mode routine (the cursor
11 wraPsu the DisPlav).

DisPlavable Characters
This routine lets YOU disPlav the 32 9raPhics characters (and their
reverse ima9es). The codes are numbered from 0 through X,1F', and
are Pictured in the Operator's Manual. Codes X'20' through X'7F' are
disPlaved as standard ASCII characters.

In addition, several special control codes are available:

HEX
CODE

0F9

IZIFA

11lF8
IZIFC

0FD

IZIFE

!ZIFF

FUNCTION

Sets. Ni:,r·m,"ELl (Whii:e i:•n Black) modi:<. Cur~-r::ir· does ni:1'1:
advance.
Sets Reverse <Black on White) mode. Cursor does
not advance. Reverts to Normal on return from each
9r·aPhic~. u,r·it-e.
Homes cursor (Row 0, Column 0) ..
<- Moves cursor back one space. Col.=Col-1.
When cplumn equals 79, cursor "wraps" to Col .. 0
or1 Pr-ecedin9 row.
-> Moves cursor forward one space. Col .. =Col.+1 ..
When column equals 0, cursor· wraps to Col. 79
on next row down.

(up a_row) Moves cursor UP one row.
Row=Row-1.. 11 Wr·aps II to Row 23 when Row::::IZJ ..
v (down arrobJ) Moves cursor down one row.
Row=liow+ 1.. 11 WraF~s II u P to Row 0 whr:1n Row=2:-S ..

At exit, the cursor is alwavs set to the Graphics Position
immediatelv after the last character disPlaved. If the Buffer len9th
was zero, the cursor is set to Position specified in BC re9isters.

Er1tr·y Conditions

B = Row on scr·een to start disPlavin9 t~,e buffer,
B < 24 .. If B > 23, then B mod 24 is used as
f'OW P(t'.:.ition ..

C - Column on screen to start disPlavin9 the buffer.
In 80 chararcter/line mode, C < 80.
For C > 79, C mod 80 is used as column Position.
In 40 character/line mode, C < 40.
For C > 39, C mod 40 is used as column Position ..

D = Length i:,f buf'fer·, in rang,.,~ <0,255>
(HL) = Be9innin9 of text buffera The buffer should contain

codes below X'80 1 or the special control codes above
X'FB'a Anv value outside these ran9es will cause an

A
-err·ora
10

•

•

•

•

•

•

MODEL II TRSDOS TECHNICAL. INFORMATION

NZ=> Error (Invalid character sent}
A = Er·r·or· Cc,de

PAGE 111l9

MODEL l I TRSDOS TECHNICAL INFORMATION PAGE 110

VDREAD ('Video Read"l--Function Code 11

This routine raads characters from the Vidao DisPlav into a
specified buffer. It is a GrahPics Mode ~outine; when it reads Past
the last column, it wraps back to column 1 on the next row. When it
reads Past column 79 on row 23j it wraps back to row 0, column 0"

Reverse (black on white) mode characters are read in as ASCII codes
Just like their Normal counterparts; reverse mode is indicated when
th• most si9nificant bit (bit 7) is set"

This routine can also be used Just to locate the cursor (see
below),.

Entr·Y Condition,;.

C =

D =

(HL) =
A =

Row on screen wher·e read starts, B < 24.
If B > 23, then B mod 24 is used as row Position.
Column on screen where read starts.
In 80 chararcter/line mode, C < 80.
For· C > 79, C mod 80 is used as column position.
In 40 character/line mode, C < 40.
For C > 39, C mod 40 is used as column Position.
Len9th of buffer·, in ran9e <0,255>. If D ,= 0, then
Band Care i9nored. Current cursor Position will be
returned as row, column in BC re9ister Pai~~
Be9innin9 of text buffer
11

BC= Current cursor Position, B • row, C = column~ CURSOR
Postion at exit is the same as at entry--VDREAD does
not chan9e it~

NZ = Er·r·or·
A = Er·r-or· C,:,de

•

•

•

•

•

•

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 111

VIDKEY--Function Coda 12

This r·outina s.ands a Pr·omPtin9 mass.a9e tc, the Dis.PhtY and than waits
for a line from tha KaYboard. It is a Scroll Mode routine, combinin9
the functions of VDLINE and KBLINE.

Tha routine writes tha specified taxt buffer to tha DisPlaY,
starting at the currant cursor Position. The text buffer must
contain codes (X'80'. Refer to VDLINE for a list of Racaived
Control Codas and other details.

After· tha Video write, the cur·sor· wi 11 be Positic,ned immediat<'!!l'Y'
after the last character disPlaYad. ITo move it to another position,
control codas can be Placed at the end of the text buffer.I

Next, the routine 9ets a line from tha Keyboard.

NOTE
Before starting the line inPut, all PraviouslY
stored kevstrokes ara cleared.

Refer to KBLINE for a list of Received Control Codas and other
d•tails.

Entr·Y Cc,nd it ions.

iHLl =
B =

e,t'9inriiri9
Number of
<l?J,255>

of text buffer containing disPlav massa9a.
characters to be disPlav•d, Bin th• ran9e

C = Len9th of Kevbord inPut field, C in the ran9a (0,255>
IDEl • Be9innin9 of text buff•r wh•r• Kavboard inPut will

be ~-t•)r·ed
A = 12

Exit C,:,nditions.

NZ•) Error (llla9al value in disPlaY buffer)
A • Error Coda

If Z is set <no error), then r~9isters Band C contain:
B • Number of characters input from th• K•vboard,

including ca~rriQ9& return, if anv
C = Kavboard line termination. If C • 0, th•n inPut buffer

was filled. Otherwise C • control character that
t•rminated the lin• lcarria9a return)

If Z is not set Cerrorl, the re9istars Band C contain:
B • Number of characters not disPlavad, inc1udin9 the one

causing the error
C • Charact•r causin9 the error

i"IODEL. II TRSDOS TECHNICAL. INFORl"IATION PAGE 112

CURSOR--Function Code 26

This routine turns the cursor disPlaY on or off. TRSDOS keeps track
of the current cursor Position whether it is on or off.

Entr···..- Condition~-

B = Function Switch. If B = 0 then cursor will be
turned off. If B <> 0 then cursor will be turned on.

A = 26

•

•

•

•

•

•

MODEL II TRSDOS 1"ECHNI CAL lNFORMATI ON PAGE 113

SCROLL--Function Coda 27

This ~outin@ lets vou Prot•ct a Portion of the DisPlav fpom
scro11in9. From 0 to 23 lines at the TOP of the disPlav can be
Protected; when scrollin9 occurs, onlv lines below the Protected
area will be chan9ad.

Entr·Y Cortdi ti .:,ns

B
A

= Number of lines to be Protected, in ran9e <0,23>
27

MODEL II TRSDOS TECHNICAL INFORMATION

4.4 Linf< Pr·intf<r·

Supervisor Calls described in this section:

Fun1:i:ir:,n
Code Name Purpose

17
18
19

PRINIT
PRCHAR
PRLINE

Initializes the Line Printer Driver.
Send a character to the Printer.
Send a line to the Printer.

PAGE 114 •

•

•

•

•

•

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 115

PRINIT ("Printer Initialization")--Function Code 17

This routine initializes the Lina Printer driver. It is
automatically called whan tha system is initialized. You don't naad
to call it unless:

You want to chan9e some of the Parameters.
The Printar was not available Craadv) when tha Svstam
was initialized.

Whan initialized bv the Svstam, the following Parameters are set•
Page Langth Clines to a Pa9al i 66
Printed Lines Per page : 60
Autc•matic Form Feed Yes
Lina langth (Characters/Line) 132

NOTE
Linafaeds ara done by tha Svstem during
initialization. You may want to reset the P&Per
bafore using the Printer for the first time.

Entrv Conditions.

8
C

Pa9e Len9th 166 is standard)
• Printed Lines Par page 160 is standard).

If C = 0, no automatic form feed is done.
Otherwise, automatic form feed is done after
have been Printed.

D • Maximum number of characters in a line
1132 is standard)

A = 17

E::<i't Conditions

NZ ::::> Er·r· 1:ir-
A = Er·r·or Cc,de

Clines

MODEL II TRSDOS TECHNICAL INFORMATION

PRCHAR ("Print Character"l--Function Code 18

This routine s•nds one character to the Printer.

N(lTE
Most Printers do not Print until their buffer
is filled or a carria9e return is received*

Erd:r·Y Cor,ditir.,ns.

B • ASCII code for character to send
A = 18

Exit Cc,nd it i orrs

NZ
A

=> Er-ror
Er,r·or· Ccide

PAGE 116

•

•

•

•

•

•

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 117

PRLINE C"Print Line"I--Function Code 19

This routine sends a line to th• Printer. The line can include
control characters as well as Printable data. A tab character
embedded in the buffer will causa the Printer to skiP over to the
next 8-bvte boundarv.

(HLl • Start of text buffer containin9 data and controls to
;.and to Pr in tBr·

=

A

Len9th of buffer (number of cha~acters to send)
Contr·ol character· (anY char·actBr) to send after· 1 ast
character in buffer
1.,,

NZ => Er·r·r.,r·
A ;; Er-r-or- C,:ide

MODEL II TRSDOB TECHNICAL INFORMATION PAGE 118

(M2D0S8 8/6/79)

'•· 5 Fi J e, Acce,s.s.

SuPervisor calls described in this section:
Function

Code

33
34
35
411)

'• 1
42
43
4!.f

Name

LOCATE
HEADNX
DIRRD
OPEN

f\lLL
CLOSE
WHITNX
POSNWH

F1Jnctic,n

Returns the current record number~
Gets next record (Sequential access>
Reads specified recor·d (Direct Access).
Sets UP access to new or existing
file,.
Deletes the file from the directory.
Terminates access to an •Pen file.
Writes next record (Sequential Access).
Writes specified record (Dir·ect Access).

•

•

•

•

•

•

MODEL I I TRSDOS TECHNICAL INFORMATION PAGE 119

OPEN - Function Code 40

This one call handles both tha creation and Opening of files.

A 9ivan file can only be 0Pan undar one Data Control Block at a
time. Because of the versatile file Processing routines, this one
DCB is sufficient to handle the various I/0 aPPlications.

Entry Conditions for OPEN
······---------
(DE)
(HL)
A

= 60-b··da Data Cc,ntr-c,1 Blc,ck is.e,e bal,:,w).
- 11-bYte Par-ameter List (see balow).
= 40 ..

Exit Conditions

NZ => Er·r-or.
A= Er-r-or- Coda.

Before calling OPEN, vou must reserve sP&ce for the Data Control
Block, Parameter Liit, Buffer Area and Reco~d A~ea, as described
bc'1 0~1 •

Data Contr·ol Block (60 bytes)

Tha Data Control Block (DCB) is used bY the SYstem for- file access
bookkaePin9. You will also use it to Pass the file specification for
the file You want to •Pen, as follows:

Before calling OPEN, Placa tha file specification at the ba9innin9
of tha DCB, followed by a carria9e return. Sea Chapterr 1, "File
SPecificationu for details8

For example I$ si9nifias a carria9e retur-nl•

CONTENTS OF FIRST BYTES OF DCB BEFORE OPEN

: FILENAME/EXT. PASSWORD: D IDISKNAMEJ$:
:--:
While a file is •Pen, the 'fi les.Pec is r·eplaced with irtfQr,mation used
by the SYstem for bookkeePin9. Whan th• file is Closed, the ori9inal
filaspec CaxcePt for tha Password) will be Put back into the DCB.

IMPORTANT NOTE
Do.not ever modify anY portion of the DCB while
tha file is (>pan. If You do, the results will be
unpredictable.

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 1212)

Parameter List (11 bvtes)

This list contains information TRSDOS needs to create or access the
f i H,:

CONTENTS OF PARAMETER LIST
:--------g--------:-------:-----:-----:------:------.--:------:
: BUFADR: RECADR: EODAD: R/W: RL : F/V : 0/1/2 : 12)12)

:---------:--•--·-·---:-------:-----:-----:-----:-------:------:

BUFADR (BUFFER ADDRESS). This two-bvte field must Point to the
be9innin9 of the Buffer Aread

The Bufft•r· IH·E<a i'.::- the space TRSDOS wi 11 u::.e to pr·i:,1:ess a 11 file
accesses. If spanned records are Possible, You must reserve 512
bvtesu If no sPannin9 is Possible, reserve onlv 256 bvtes.

With Fixed Length Record files, sPannin9 is onlv required when the
record len9th is not an even divisor of 256d For example, if the
record len9th is 64, then each PhYsical record contains four records
exactly, and no spanning is r·e9uired. In this case, reserve only 256
bvtes for Processin9u

However, if the record len9th is 24 (not an even divisor
th,en '.£:.,:ime r·ei::,:ir·d'.£:. wi 11 ha.ve to b~:;,, '.::-P~:tnned. In thi'.=. case,
need to reserve 512 bvtes.

of 256),
Yi)U t.t.li 11

With Variable Len9th Record files, You must always reserve 512 bvtes
for Processin9u This is because sPannin9 may be re9uired, depending
on the lengths of the individual records in the fileu

RECADR (RECORD ADDRESS). This two-bvte field must Point to the
be9innin9 of vour Record Area.

For disk reads, this is where TRSDOS will Place the record. For disk
writes, this is where YOU Put the record to be written.

Exception: For FLR files with a record len9th of 256, this address
is not used. Your recor·d will be in the buffer area Poir1ted to bv
BUFADI~.

For Fixed Len9th Record files with record length not equal to 256,
this buffer shot1ld be the same size as the record len9th. For
Variable len9th Files, this area should be 1on9 enou9h to contain
the lon9est record in the file (including the len9th-bvte). If You
are not sure what the lon9est record will be, reserve 256 bytes.

EODAD (END OF DATA ADDRESS). This two bvte field can be used to 9ive
TRSDOS a transfer address
durin9 an attempted read.

to use in case the end of file is reached
If EODAD = 0 and end of file is reached,

•

•

•

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 121

• the SVC wi 11 ,-et•Jr-n with the ,:,nd of fi 1,:, e,r-r-or code, in re9is.t,:,1' A.

•

•

R/W (READ OR WRITE!. Put an ASCII "R" her-e to allow read-access
only; Put an ASCII "W" here to allow read and/or write access.

RL (RECORD LENGTH). This one,-byte field spe,cifie,s the r-e,cord len9th
to be used. Zero indicates a r-ecord length of 256. For Va~iable
Len9th r-ecord files, this field is i9nored. If the file already
exists, and the Creation Code is 0, the 9Ystem will SUPPIY the
correct RL value, re9ar-dless of what YOU put there.

V/F (Variable or Fixed Len9thl. This one bYte field contains either
an ASCII 'V' for Variable or an ASCII "F' for- Fixed. Once a file has
been created, this attribute cannot b,:, changed. If the file already
exists, and the C~eation Code is 0, the System will SUPPlv the
co~r~ct F/V value1 re9ardless of what vou Put in the Pa~arneter
1 is.t.

m/1/2 (CREATION CODE). This one bvta field contains a binarv number
0, 1, or· 2.

, CC>DE MEANING ' : "~"··-··-·--·: -------·---·-----~-.. -.. --~-"------·-------·----------------:
' Ii) OP.en th;; , i1"' onlY if ii: a 1 read··!" t>:R'.ists ..

D,:, r1r.:t t cr,eate a new fila in di r·~ctor,--..-.

' ' Recc,r·d Len9th and ;,,nd of f i 1 a are MOT :

' ' res.et .. ' : ----~··--: ·-·-·-··-·---·-"--··---------------------·-.. ---------·--·---·---: . .
:

1

'
Create a new file onlv! do not Open an
,:,xistin9 file. Record Len9th and and of
file are set at Open time.

:

.. '"" ___ ,_, __ .. --~---·---·--·-----"--·-----------------·----·--------~ ... --.. ::
Open existinQ file; if file not found,
create it. Record Len9th and and of file
:a.r·~ r·€:•S-\:'t.

00 (END-OF-LIST MARKER), Always put a binary zaro at the end of the
Par·amater· List •

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 122

READNX--Function Code 34

This routine reads the next record after the current recordd
(Current record is the last record accessedul If the file has Just
been Opened, READNX will read the first recordu

Entrv Conditions

Data Control
Reserved for

IDEl -
IHLl -

A - 34.

Exit Conditions

NZ - Error
A = Err·or Code.

Block for currently OPen
use in later versions of

file.
TRSDOS.

Upon retur·n, vour- record is in the Record Area Pointed to by RECADR
in the Parameter list, or, if RL=256 and record tvPe is Fixed, Your
record is in the area Poir,ted to bv BUFADR.

•

•

•

•

•

•

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 123

WRITNX--Function Code 43

This routine writes the next record after the last record accessed,
that is, it writes sequentiallv. If WRITNX is the first access after
the file is Opened, the first record will be writtenu

NOTE
When vou write to a Variable-Length Recor·d file,
the end of file is reset to t~e last record written~
r·e9ardless of its Previous Position.

Entry Conditions

(DEl -
CHLl

Data Control
Reserved for

A - 43u

Block for cur·r·entlY ~Pen
use in later versions of

file.
TRSDOS.

Before callin9 WRITNX, Put Your r·ecord ir1 the recor·d area Pointed to
by RECADR in the Parameter list, or, if LRL=256 and record tvPe is
Fixed, Put r·ecord in area Pointed to bv BUFADRa

Exit Conditions

NZ - Error.
A => Err·or Code=

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 124

DIRRD--Function Code 35

This routine reads the specified record, allowin9 direct accessw

NOTE
With VLR files, you can only use it to
read the first record or to read the end
of file.

Entrv Conditions

(DE) - Data Control Block for currently •Pen file.
BC •- Desired record number.

BC = 0 means Position to be9innin9 of file.
BC = X'FFFF' means Position to end of file.

(HL) = Reserved for use in later versions of TRSDOS.
A = 35

Note: In a future release of TRSDOS, (BC)= address of a four-·byte
value sPecifvin9 a record number.

Exit Conditions

NZ
A

=> Error.
Error Code~

Upon return, the r·ecord will be in the Record Ar·ea Pointed to by
RECADR in the Parameter list, or, if RL=256 and record tYPe is
Fixed, vour reco~d is in the a~ea Pointed to bv BUFADR.

•

•

•

•

•

•

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 125

DIRWR--Function Coda 44

This routine writes the specified r-ecord .. It wr·ites th• record into
the sp,ecified record positii:,n of the 'file ..

<DE) -·
BC ·-

(HLl :::::

A ""

NOTE
For VLR files, vou can onlv Position
to the be9innin9 or end of file¢ When
vou write to a VLR file, the end of file
is reset to last record written ..

Data Control Block for currentlv •Pen filt'.
Record number vou want to write.

BC = 0 means write first record in file.
BC = X'FFFF? means write record at end of file~

Res.,e-r-ved for- us• in ·1ater- v,a,r·s-.ic1ris- of TRSDOS ..
'+4

Before ca11in9 DIRWR, put the record into th • Record Area Pointed to
bv RECADR in th• Parameter List, or, if RL=256 and record tvPe is
Fixed, vour re~ord is in the area Pointed to bv BUFADR •

Note: In a future ralaase of TRSDOS, <BC)= address of a four-bvte
value SPecifvin9 a record number~

E)::it Condii:ions

NZ => Er·r·or.
A = Error Code~

MODEL II TRSDOS TECHNICAL INFORl"IATION PAGE 126

LOCATE-·-Function Cal 1 33

This function returns the number of the current r·ecord, i~e~i the
number of the last record accessed. You can use this call onlY with
Fixed Len9th Record files~

Entr•y• Condition~.

CDE) - Data Control Block for currentlv •Pen file.
CHL) - Reserved for use in later versions of TRSDOS~
A = 33

Note: In a future release of TRSDOS, IBCI = address of a four-bvte
value sPecifvin9 a record numberq

Exit Corid it i ,::tr,s

BC• Current Record Number
NZ •> Er·ror

P.. ;:;;;:. Er·r·or· Cc,de

•

•

•

•

•

•

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 127

CLOSE--Function Code 42

This routine terminates access to the file. If there are records in
the Buffer Area not vet written, thev will be written at this time.

Entr···r Conditions-.

<DE)
A

= Data Control Block for
= 42

NZ .,,) Err·or
A = Er·r·or· Code

currently 0Pan file.

UPon return, the filesPec (except for the Password) will be Put back
ird:o the DCB ..

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 128

KILL--Function Code 41

This routine deletes the specified file from the dir-ectorv. A file
must be Closed before it can be killed.

Entr···t Conditions

(DE)= Data Control Block, containin9 standard TRSDOS
filesPec (see illustration in descriPtion of OPEN>.

A -· L,1

Exit Conditions.

NZ => Er-r-,:,r-.
A = Error· Code.

•

•

•

•

•

•

MODEL. II TRSDOS TECHNICAL. INFORMATION

M'.2DOS9 f:3/ 6/79

4.6 Computational

Supervisor calls described in this section:

Function
Code

6
20
21

23

24

Mame

DELAY
F!ANDOM
BINDEC

STCMP
MPYDIV

BINHEX

DATE
PARSER

STSCAN

Function

Provides a delay-loop
Provides a random number, ran9e <0,254>
Converts binarv to ASCII-coded decimal,
and vice v,er·sa
Compares two text strin9s
Performs 8 bit* 16 bit multiPlication
and 16 bit/ 8 bit division
Converts binary to ASCII-coded
hexadecimal, and vice-versa
Sets or returns the time and date.
Finds the alphanumeric Parameter
field in a text strin9
Looks for a specified strin9 inside
a i:B:,-cl: b1Jf1'Br·

PAGE 129

MODEL II TRSDOS TE CHN I CAL I NF O RMA TI 01\J PAGE 130

DELAY--Funci:ion Code 6

This routine Provides a delay routine, returnin9 control to the
calling Pro9ram after the specified time ha£ 6laPsad~

BC• Delay MultiPlier. If BC• 0, then delay time will be
426 mi 11 iseconds. If BC > 0, then ,je]ay time u!i 11 be=

6~5 * (BC - 1) + 22 mic~oseconds
A 6

•

•

•

•

•

•

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 131

RANDOM--Function Coda 2111

This routine r•turns a random one-byte value. Ta extend the cycle of
repetition, th• instantaneous tim@/date are used in 9eneratin9 the
ri umb-e r·.

You Pass the r~utine a limit value; the value returned is in the
ran9e (0,limit-1). For •xamPle, if the limit is 255, then the value
returned will be in the ran9e (0,254>.

B = Limit value.
A = 20

E>d t Cc,r,di tions.

C Rar,dom number.
For B > 1, number returned is in ran9e <0,B-1>~
For B = 0 or 1, number returned= 0

MODEL. II TRSDOS TECHNICAL. INFORMATION PAGE 132

BINDEC--Function Code 21

This routine converts a two-bvte binarv number to ASCII-coded
decimal, and vice versa. Decimal ran9e is <0,65535>.

Entrv Conditions·

B = Function Switch.
If B = 0, then convert binarv to ASCII decimal.
If B not 0 then convert ASCII decimal to binarv.

Contents of other re9isters when 8 = 0 (bin-)dec):
DE = Two-bvte binarv number to convert

(HL) = 5 bvte area to contain ASCII coded decimal value upon
r-etur-n .. The field wi 11 con·tain decimal di9its
(X'30'-X'39') leading zeroes on the left as necessarv
to fill the field, fi:1r- e>~amPle, i:he number· 21 h.Jould
be: 00021.

Contents of other re9isters when 8 is not 0 (dec->bin):
CHL.l = 5-bvte area containing ASCII decimal value to be

converted to binarv.
A 21

E::-<it Conditions

CHLl = Decimal value
DE = Bina~Y value

•

•

•

•

•

•

MODEL. II TRSDOS TECHNICAL. INFORMATION PAGE 133

BINHEX--Function Coda 24

This routine converts a two-bvte binary number to ASCII-coded
haxadacimal, and vice versa. Haxadacimal ran9a is <0,FFFF>.

Entr···•·· Conditions

B • Function Switch.
If B = 0, then convert binarv to ASCII hexadecimalu
If Bis not 0, convert ASCII hexadecimal to binarv~

A • 24

Contents of other re9isters when B = 0 (bin->hex):
DE = Two·-bvte binarv number to convert

(HL) = 4 bvte area to contain ASCII coded hexadecimal value
upon return~ The field will contain hexadecimal di9its
with leadin9 zeroes on the left as necessary to fill
the field, for example, the number X'FF' would be:
00FF.

Contents of other re9isters when Bis not 0 (hex->bin):
IHL) • 4-bvta area containin9 ASCII haxadacimal value to ba

converted as described aboveu

Exit Conditions

CHL.l - Haxadacimal value
DE = Binarv value

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 134

MPYDIV (1'MultiPlY Divide 11)--Function Code 23

This routine does multiPlication and division with one 2-byte value
and one 1-bvte value.

Entry Conditions

B Function switch.
If B = 0 then multiPlv.
If Bis not 0 then divide.

A = 23

For multiPlication:
HL = MultiPlicand

C - MultiPlier

For division:
HL = Dividend

C = Divisor

Exit Conditions

HL
A
C

=
=
=

Result (product HL • C or ~uotient HL/Cl
Overflow bvte (multiPlication onlv)
R~mainder (division onlv)

Status bits affected by division:
Carrv fla9 set if dividing by zero. Divide not attempted.
Z fla9 set onlv if the 9uotient is zerob

Status bits affected by multiPlication:
Carrv Flag set if overflown
Z flag set onlv if result is zeroa

•

•

•

•

•

•

MODEL II THSDOS TECHNICAL INFOHMATION PAGE 13'.j

STCMP--Function Code 22

This routine compares two strin9s to determine their collating
se•:::iu'l!:!nC'I!!'.

Entr···..- Conditions

(DEi - First strin9.
CHLI • Second strin9.

BC - Number of characters to compare.
A - 22

E:=<it Condition~-

Status bits indicate results, as follows:

Z Fla9 set indicates strin9s are identical~
NZ indicates strin9s not identical

Carrv Flag set indicates first strin9 (pointed to bv DE) Precedes
second strin9 (HL) in collating sequence.

Other· re9ister contents:
A -· First non-matchin9 cha.r-a:cter- in fir·st ~-tr·in9 ..

When strin9s are not equal, YOU can get further information from the
Prime re9isters, as follows:
(HL 7

) - Address of first non-matchin9 character in second
::.tr·in9.

(DE 7
) = Address of first non-matching character in first

si:rin9 ..
BC 7 = Number of characters r·emaining, including the non­

matchin9 character ..

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 136

DATE--Function Code 45

This r·outine sets or returns the real-time (time and date)u l'he data
can be returned as a 26-bYte ASCII string containing 8 fields, as
illustrated below (numbers refer· to byte lengths of eact1 field)Q

:--------:-----:--------:----:--------:-------~-----:---------:
: NAME OF: MON.: DAY OF: YR: DAY OF : TIME: MON: DAY OF

DAY MON. YEAR # : WEEK
:-·----·---:------:--------:-----:---------•:------:---·----:--•-·-·-·---:

3 3 4 3 8 1

CONTENTS OF TIME/DATE STRING
(Len9th of field is shown under each field)

Example Time/Date string:
SATAPR28197911813.20.42045

Represents the data ''Saturday, APril 28, 1979, 118th dav of the
Year, 13.20.42 hou·rs, 4th month of the vear, 5th dav of
(Periods are used instead of colons, since theY 7 re more
easily entered from the keyboard~>

NOTES
DAY OF WEEK Field: Monday is Day 0n
l"he date calculations are based on t~,e
Julian CalendarH

Entry Conditions

B Fur,ction Switch~

If B •- 0 (Get time/date):
(HL> - 26 bvte buffer wher·e date/time will be stored~

If B = 1 (Set date):
(~1L) - 10 bYte buffer containin9 date in this for·m:

MM/DD/YYYY

If B - 2 (Set time):
(HL) - 8 byte buffer containing time in this form:

HH.MM.SS

the week«

•

•

•

•

•

•

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 137

PARSER-·~Funct ion Code 46

This 9eneral-PUrPose routine "Parsesu (analvzes) a text buffer into
fields: and irnbfields:. PARSER is: us:eful for· analYzinll TRSDOS command
lines (including keyword commands, file specifications, k~vword
options and Parameters~ It can also be used as a fundamental routine
for• compiler or text editor. This vers:atilitY derives from the
9eneralitv of the routine~

BY necas:sitv, the des:criPtion of PARSER is: rather lon9 and detailed.
In actual use, the routine is as convenient as it is Powerful. For
example, PARSER is desi9ned to allow ~ePetitive calls for Processing
a text buffer; on exit from the routine~ Parameters for the next
call are all readily available in appropriate regi,;ters.

The routine has pre-defin•d sets of field-characters and separators;
vou can use these or re-define them to suit Your aPPlication ..

In general, a field is any string of alphanumeric characters
IA-Z,a-z,0-9) with no embedded blanks. Fields are delimited by
saParators and terminators, defined below. For axamPle, the line:

BAUD,,,300, PARITY=EVEN, WORD,,,7
contains 6 fields: BAUD, 300, PARITY, EVEN, and 7 •

Hc,wever·, a fie Id can al l1-0 be delimited by Pair·•d quote msi,rks:
11 field• or 'field'

When the ~uote ma~ks are used, ANY characters, not Just
alPhanumerics, ara taken as Part of th• field. The quote marks are
not included in th• field. For example, the line:

'DATE (11)7/11/79)'
will be interpreted as on• field containing evervthin9 inside the
9uo·i:es ..

When a 9uote mark is used to mark the start of a field, the same
type of quot• mark must be used to mark the and of the field. This
allows vou to incl'ude quotes in a field, for examPle:

ll X, FFIZllll' II

will be Parsed as one field containing EVERYTHING inside the double
quotes• », including the sin91e quote marks' '

A sep;a,r·ator- i!E'. ,;r,.n·y- non-·alPhanumer-ic char·acter· .. PARSE wi 11 always
stop when a separator is encountered, EXCEPT when the separator is a
blank (X'20'1. Leadin9 and trailin9 blanks are i9nored. After
trailin9 blanks, PARSE stop,; at the be9innin9 af the next field, or
on the first non-blank separator.

You can &lso define terminators, which will stop the parse
re9ardless of whether a field has been found. Unless vou
specificallv define these, PARSE will on1v stoP on non-blank
::.eparati:1r·s ..

Separators ~nd terminators have the same effect on a Parse; the only
difference ls: in how theY affect the F 1Fla91 resister on exit.

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 138

To re-define the field, separator, and terminator sets

If you need to chan9e the field and separator sets, or define
terminators, vou can Provide three chan9e-·lists via a List Address
Block, explained later ..

Entr·Y Condition'.:,

IHLl = Start address of text buffer
CDEI - Address of List Address Block.

DE= 0 indicates no lists are to be used.
C = Maximum len9th of Parse
A -· t,6

E>::ii: Conditions

(HL) = Field-Position Pointer~
<HL) - First bvte of field, if a delimited field was

f,:-und ..
(HL) - Terminator or· non-·blank separator if no field

wa'.:. found ..
(HL) = Last bvte of buffer if Parse reached maximum

len9th.
B = Actual len9th of field, excluding leadin9 and trailing

blank:;..
A = Character Precedin9 the field Just found. If B = 0

A= X'FF'
C - Number of bvtes remainin9 to Parse after terminator or

seParatoru Note that trailin9 blanks have been Parsed.
D = SeParator or terminator at end of field.

If D = X,FF, then Parse stoPPed without finding a
non-blank sePar·ator or termin~tor.

E - Displacement Pointer for next Parse call.
Add E to HL to 9et:
a) Be9inning address of next field, or
b) Address of bv~e fo11owin9 the last bvte Par-sed.

Note that if Parse reached maximum length, then
E + HL = Address followin9 end of text buffer.
If Parse did not reach maximum len9th, and E = 1,
then E + HL = Address following sePar·ator or
ter-mi na tor·.

Status bits CF re9ister) affected when Parse did NOT r·each
reach maximum len9th:
Z fla.9•

Z (set) if Parse ended with a separator.
NZ (not set) if Parse ended with a terminator.

C flag:
C (set) if ther·e were trailing blanks between end of

field and next non-blank separator or terminator-.
NC (reset--not set) if there were no trailing blanks.

•

•

•

•

•

•

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 139

List Address Block

The List Address Block is six bytes long and contains two-bvte
addrassas llsb,msbl for three chan9e-lists=

List 1: Characters to be used as terminators
List 21 Additions to the sat of field characters
List 3: Deletions f~om the set of field cha~actersJ i.e.¥

al Phanumer·ics 'l:r:i b~ int'i'r·Pr·eted as S~Par-ator·s ..

Each list has the followin9 form•
1st bvte : 2nd bvte : 3rd bvte : ------------ ~ n+l bYte

:----------:----------;----------:--------------:----------:
:n, numb<c:<r·
:of char-'s
~in list

: fir·S'.t
:-c:har·act~r·

: :>2.econd ::
:character : ------------:

nth
cha.r-act~r-:

:-----·---------·------·---------------------------------------:
Nota5:
1. There are three wavs to indicate a null list:

a) Set the character-count bvte (n) equal to zero.
bl Bet the P~inter in the List Address Block to zero.
c) Set DE=0 if YOU aren 1 t 9oin9 Provide anv lists.

2 .. Characters.are stoPed in lists in ABCif fo~m ..
3 .. If a char-a,:·l:e,r· ,a.pf,ear·$ in mc,r-e- th,:itn c:ine 1 ist, it w.i 11 have

the characteristics of the first list that contains it.

Here"s is a tvPical List Address Block with its associated lists.
A,;.s.ume that or, entr·Y to PARSER, IDE) = X'8011.1I2P.

:
: Address: Len9th:

X' 8000' '"• .,_ ' X' 811llil2 • ' 2
X' 8004' 2

X'911l00' ' 1

' X' 9001' = 1

' X' '1002' ' l '
' X'9003' 1

X' ':;'004' 1

' X' 90:l121' 1 ' X'9011' 1 ' X'9012' 1 =
X'911l13' 1

Hexadecima.l
Cont.;nts

X ' 90\ZJIZJ ' (start
X'91il111l' (s.tar·t
X'911l20' (s.tart

X ., lil4' (4 ch~:1.r· 1 s

of I is,t
of l i :;;. t
('.rf ·1 ist

in I i ,. t
X, 11)1)' (car·r·ia9e return)
X' 78' (left b1 ~:1.ce ()

X'7D' (r-i9ht br-ace l)

X? ~~:!9';< (left Par-en))

X' 03' Cl ch,;1r,::. i !"I list
X' :,F' (ll ? II)

X' 40' (U@I•)

X1 23 1 (II# U)

1) ' 2)
3)

1)

2) '
'
=

MODEL II TRSDOS TECHNICAL.. INFORMATION PAGE 14-0

SamPle Pro9rarnmin9

1·he following code shows tvPical rePetitive uses of PARSER to break
UP a Par~meter list.

;-------------PREPARE FOR PARSING l..OOP-----------------------
l..D C,MAXLEN C = Maximum len9th to Parse
l..D E, 0 For· initial ca.I I to MXTFL..D
L..D HL,BUFFER CHLl = strin9 to Parse

;-------------PARSE LOOP-------------------------------------
PARSE CALL NXTFLD Routine to call PARSER

CALL HANDLR Routine to handle new field
JR NZ,NXTRTN Go to next routine if

L.D
OR
JI'<
LD
CP

A,C
A
NZ, PAl'/EE
A,0FFH
D

,JR Z, ERi~
,JR NXTRTN

;-------------FIELD-HANDLING
HANDLR PUSH AF

Parsed ended on terminator·
Else 9et new max len9th
I'.:°• it Zf:iro?
If not, then continu{:

If D=0FFH then no seParator
at end of buffer.

So 9o to error routine
Else, tt1en do next r·outine.

ROUTINE------------------------­
Must save status re9isters
and any other re9isters
t.1dll be chan9ed ..

Processin9 code 9oes here ...
POP AF

RET

Restore AF (and other
re9isters saved at entrv)

;-------------CALL TO PARSER---------------------------------
NXTFLD LD D,0

ADD HL,DE
LD DE,LAB

LD
RST
RET

Zer·o msb of DE:
CHLl =whereto start Parse
(DE) = List address block
If DE=0 then no lists used.
Function C,:idE.-

;-------------PROGRAM CONTINUEE HERE------------------------
NXTRTN EQU S

•

•

•

•

•

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 141

STSCAN (uString Scan")--Function Code 49

This is a 9eneral Purpose strin9 scan. It searches through a
specified text buffer for the specified strin9. This strin9 can
consist of anv valu•s 0-255 (it is not strictlv a1Phanumeric)n

Entr··..-· Cc,ndition~-

IHLI • Text area to ba searched.
(DEi • CornPare strin9.

B - L.en9th of compare st~in9.
A '- L;9

E::-::it Conditions

NZ=> String not found~
Z => Strin9 foundM

(HLI • Start Position of rnatchin9 string in search strin9 •

MODEL II TRSDOS TECHNICAL INFORMATION

(m2dos10 8/9/79)

4.7 Serial Communications

Supervisor Calls described in this section:

Cocle Name

55

96
97
98
99

RS232C

ARCV
ATX
BRCV
BTX

Function

Set or turn off channel A or B for serial
ir1Put/output.
Channel A receive
Chanr,el A tr-ansmit
Channel B receive
Chanr1el 8 receive

PAGE 142

These routines allow vou to use the Model II's RS-232C interface,
ct1anr1els A and Bon the back Par,el. See the Model II Qper·ation
Manual for a descriPtion of si9nals available.

•

•

•

•

•

• --c_,

MODEL II TRSDOS TECHNICAL INFORMATION

RS232C--Initialize RS-232C Channel
Function Code 55

PAGE 143

This routine sets up or disables either channel A or B. Before
usin9 it, the &PProPriate channel should be connected to the
modem or other equipment.

This routir,e ,:.et,:. the standard RS-232C Paramet•rs, and dftfine,:. a
Pair of supervisor calls for I/0 to the specified channel. When
You initialize Channel A, SVC's 96 and 97 are defined; when vou
initializ,; Channel 8, SVC's 98 and 99 ar<s< defined. See ARCV,
ARTX, BRCV, and BTX.

Before re-initializin9 a channel, ALWAYS turn it off.

Entrv Conditions

(HL)
B

= Parameter list described below.
= Function switch

If Bis not equal to zero then turn on channel
and define I/0 SVC's for that channel.

If Bis e~ual to zero than turn off channel and
delete I/0 SVC's for that channel. In this case
only th<: fir·st bvte in the Par-ctm<:ter 1 i".t
t»A» or 11 8"} is used.

A = 55

Par·ameter· List

This six-bYte list includes the necessa~Y RS-232C Pa~amete~s=

----------------~---·-------~--------------·--------------------:
: CHANNEL, BAUD
: : RATE

: WORD : PARITY : STOP - : E,ND LIST:
: LENGTH • BITS : MARl~ER

: -------·----------·----------·------------------~·---------------:
CHANNEL is an ASCII "A" for channel A, or "B" for channel B.

BAUD RATE is a bi r,ar·· ... · value from 1 to 7:
1 fr:ir 1 lll!1) baud
2 for· 15111 baud
3 for- 300 baud
4 for· 600 b;;wd
5 for· 121ZJ!1) baud
6 f,:;,r· 241ZJ!I) baud
7 for- 4811)11) baud

1-JORD LENGTH is a bi nar··...-· value fr-om 5 to 8:
5 for 5--bi t words
6 f ,:ir· 6-bit lJJ1)r-ds.

7 for 7-bit wor·d~.
8 fer· 8-·b it wcir·ds.

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 144

STOP BITS is a binarY 1 for 1 stop bit, or 2 for 2 stop bits.

END LIST MARKER is a binarv 0.

E>::it Conditions

Error return code

For hard-wirin9 between two Model II's without a modem, use the
wirin9 arrangement described below:

f

\123456
7

• • •
f4i 11 ,~ r ,t r-

~ " "' le .12 It: 1' ~ ...

~ ~

ll "' C, :. I, {! ..
l- "' . '5 ,

~ ; l • 6 • • •
\ f4 fs ,'l; r, /g fg

' • 9 10 11 1l ~· 1 • • • •
:11 :!!d'3 ;. :l's i

,J

5

.Q
,;

9 to 11 12 13 ' • • • • • •
o:11:!!,l-,.f4f5j

p s-15 mo.le
COl\f\~c.tcr. C<l..,..
c• ... "•1:.t -u. ci. L
A or B.

'01?-1.s trt•lL
00n'l'I.C<:ior, Ct:1- w L
~ I\ ~ G 't ,ic, (1£..-M
f't OV' B' -

Connection Diagram, Model II (Channel A or B) to
Model II (Channel A or B). Use stranded wire, 24-gauge,
to connect two DB-25 connectors as illustrated. If wire
length exceeds 50 feet, twist lines 7 (GND), 2 (TD) and
3 (RD). Refer to the Model II Operation Manual for a
description of signals available.

•

•

•

•

•

•

MODEL.. II TRSDOS

ARCV--Channel A Receive
Function Code 96

TECHNICAL.. INFORMATION PAGE 145

This r·outine inputs a character· fr·om the serial Channel A. In
Practice, it is analo9ous to kevboard character inPut (see
fS:BCHAR) .

TRSDO~~ sets UP ARCV and ATX when YOU initialize channel A (see
RS232Cl. If vou call this routine without Previouslv initializing
channel A, vou will 9et an- error· return code of 1 (no function
{?>::i~-ts).

Entr·Y Condition~.

A= 96

E::<ii: Conditions.

l~, :::= Ch;3,r·a.cter· found•, if an·y· ..
NZ - No character found.
Carry Fla9 Set= Modem carrier not Present when SVC was

enter-~-=crd
A Communictions status:

Bit
:----:-------------•---u
: 0 Not used.
:----:--·---:

1 Not us-eda
:·----:--:
: 2 Not used ..
:----u--:
: 3 Modem carrier was losta
:----:--·
: 4 Paritv error occurred on character found in

r--e~-:}i::-ter- B ..
:-•---~---·--:

Data lo::-t--mor-e than one character received
between SVC 7 s. B cor1tains last character rec'd~

:-----:------------------------------·-----------------------:
: 6 Framing error occurred on last character rec 7 da
=----:--
: 7 A 11 br·f.'a.k se·=iuen1::e 11 (e>::tf.'nded null cha.r·e.cter-)

was- r-~~1:e i ved.,
:-----:----------------·---·----------------------·------------:

MODEL II THSDOS

ATX--Channel A Transmit
Function Code 97

TECHNICAL INFOHMATION PAGE 146

This. r·i:1utinE• :::.ends a cha.r·-=1.ct-ar· to thE.• ::-t=:-r-ia.'J Cha.nnt=:.-1 A~ In
Practice, it is analo9ous to video character output (see
\!DCHAH l.

l'RSDOS sets UP ARCV and ATX wt,en YOU initialize channel A (see
HS::~::3::;:'.C),, If ··{ou cal 1 this r·out.inf:! 1A1ithout r-:i-r·-e\,,iou~.·1·y· initi~1·1 i:rinH
cha.nnt~l A, Y1:iu wi 11 90.•t a.n E.rr·r·or· r·E.rt.:ur·n codE• of 1 (no function
.e:,-,:is--1:s.)"

Entr··y• C,:inditions.

B - ASCII code for char-acter to be sent
A ::::: 97

E;:{it Condition::.

NZ - No character· sent
Carry Flag Set= Modem car-rier not Present when SVC was

f':! 1"1 t~::,, rE• d n

A - Communictions status:

l~,i t Mean i n9 when st~ -1:

g----:----------------------·--·---·-·-----------·----·------·------:
: 0 Clear to Send (CTS) was not detected.
~----·---·---------·-·-·----------·--··-----------------------------·

1 Not u~.edu
:--·--:--·----·-----------~
~ 2 Transmitter is busv.
:----:---------------------------------·---------------------:
: 3 Modem carrier was lost.
:----:---------------------------------------·-----------------:
: 4 Not used.
:-----~-----------------------·--·-·-------·-·--·----------------·---•:
: 5 Not usedg
:----:---·--------------------------------------·------·-------:
: 6 Not used.
·-----:---------·--·---·-·-----·--·----·-----·-·-----------·---------------:

7 J\l,::it U'.:i'-f!dg

~-----:-------------------------------·--------------------·----··-

•

•

•

•

•

•

MODEL II TRSDOS

BRCV--Channel B Receive
Function Code 98

TECHNICAL INFORMATION PAGE 147

This routine inputs a character from the serial Channel B. In
Practice, it is analo9ous to kevboard char&cter inPut (see
KBCHAR).

TRSDOS sets UP BRCV and BTX when YOU initialize channel B (see
RS2:32C),. If ·..,·i;:qJ 1:al l i:hi~. r·outine withi;;i~Jt Previousl··{ initial izir,9
channel B, vou will 9et an error return code of 1 (no function
e::.::ists).,

Entry Conditions.

A= 98

E:,,:it C,:.nditions

B - Character found, if anY.
NZ = No character found.
Carry FlaG Set• Modem carrier not Present when SVC was

enter·ed.
A - Communictions status:

, 0 • Not used. ' : ----: -----------·-·-----~ ... --.._ .. _,, __ ~--~-----~-~------------~---------:
1 : Not 1Js.ed .. ' : ----: --------------·-----·----------------------~-~-~------~-----:

" .-, . -" Not us.ed. ' : -----:: _____ _,.,..._,,....,..,,,,,..,______ . ---------------------------------- :
: 3 : Modem carrier was lost.
: ----: --------------------------------M-----~---
' 4 Paritv error occu~red on character found in

r·e9iz.ter B. '
:----n-------•---------------· ----------------:
' 5 Data lost--more than one character received

between SVC'sn B contains last character rec,d~
:----:--:
' 6 ' Framin9 error occurr·ed on last character rec'd~

::: 7 : A ebreak se~uence 11 (extended null charact•r>

: ----: -------------~ ... ~---~-·---------••--•-------~ ... ------~---~~-~--- ... H:

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 148

BTX--Channel B Transmit
Function Code 99

This routine sends a cha~act~r to the serial Channel B. In
Practice, it is analo9ous to video character output (see
VDCHAR).

TRSDOS sets UP BRCV and BTX when vou initialize channel B (see
RS232C). If vou call this routine 1uithout Previously initializing
channel B, You will 9et an error return code of 1 (no function
B>~ists-.) ..

B = ASCII code for character to be sent
A= 99

Exit Conditions.

NZ • No character sent
Car~v Flag Set= Modem ca~~ier· not Pr·esent when SVC was

ent-ef'ed ..
A ~ Communictions status:

Bit Meaning wh~n set
t ---- t -------------------··-·-·-·-----·-·--- .. --------------------------------:

Clear ta Send (CTS) was not detected. ' : ----: -------·---··--·--·---,----,-:
: 1 Not used~ I:'-----:: ________ H _________ M ______ , _______________________ ,.......,.,_ __ ,....:

. ,., Transmitter is busv. ' : ---- : --------- -· -- ~·----------------------------------...--, ~-----:
: 3 : Modem carrier was lost. '
:: _,,_,._,,_,,: _,,,_.,_,,• .. ••••--•-•----------------~-------••"-••-•u••-•-----------•--•-•---•:
: 5 Not us~d.
:----:---·,--
: 6 Not used~

: 7 Not usedu

•

•

•

•

•

TECHNICAL INFORMATION

5" Pro9rarnmin9 with TRSDOS
==================~=======
Tt,is section tells vou how execute vour own machine-lan9ua9e
Pro9rarns under TRSDOS. In includes two sections:

Pro9rarn Entry Conditions---how contr-ol is transferr·ed
to vour Pro9ram after it is loaded from disk.
Handling Pr·o9rammed Ir,terruPts--how to uJr·ite an
interrupt service routine for BREAK-kev Processing
and TIMER interrupts.

·ro create and use a Pro9ram:
1. Enter the Pro9ram into memorv, either with DEBUG, an

assembler-~ c,r· via. the serial in·l:er•fi:.lCe channel fr·om
another· dt<vi,:e ..

2. Use the DUMP command to save the Pro9ram as an executable
disk file, settin9 load and transfer addresses.

3. T1:i r·ur, the Fi-r-o9r·am, input the file narrif:' to the TRSDOS
command interpreter CTRSDOS READY mode) ..

5 .. 1 Pro9r·am Entry Conditions

PAGE 149

UPon
BC

entrv to vour Pro9ram, TRSDOS sets TJP the following re9isters:
- First bYte following vour Pro9ram, i.e., the first

free bYte for use bv vour Pro9r·am.
DE = Hi9hest memory address not Protected bv TRSDOS, i.e.,

the end of memorv which car, be used bY vour Pro9ram.
HL - Buffer containin9 the last command entered to the

TRSDOS command interpreter-. The first bYte of the
buffer contains the 1en9th of the command line, not
inc1udin9 the carria9e· retur-n. The text of the command
follows this len9th byte.

:--------:----------:----------:
len9th : 1st bYte : 2nd byte

: of text: of corn-
n ma.nd

: of com-­
mand

..........

:--------:----------:----------:

5.2 Handling Pro9rarnmed Interrupts

:---------:-----:
: nth b--(te ::. ' :of com­
:: mand

: X' 0D' :

' :---------:-----:

TRSDOS allows two user-Pro9rarnmed interruPts as described under
SETBRK and TIMER. When either kind of interrupt is received (BREAK
key is Pressed or TIMER counts to zero), control transfer to vour
interrupt handling routine.

Note: System routines called by Your pro9ram are also subJect to
• inter-r·uPts .. Inter·r·1JPt handlers c-a.n ,al so be inter·r·upted.

Upor1 entrv to your interrupt Processin9 routine, TRSDOS sets UP the
re9isters as follows:
(SP)= The address of tt1e next instruction to be executed

MODEL II TRSDOS TECHNICAL INFORMATION

when the interrupt was received.
Other registers!

Contents are the same as they were when
the interrupt was received.

PAGE 150

Before doin9 anv Processing, YOU should save all re9isters. When
finished Processin9, restore all re9isters and execute a return to
continue with the interrupted Pro9ram.

It is 9ood Practice to keep interrupt handlin9 routines short!
ideally, the routine simPIY fla9s the main Pro9ram that an interrupt
has occurred and returns. The main Pro9ram can then respond to the
interrupt flag when convenient.

Always end Your interrupt handler with the RET instruction and with
all re9isters intact.

TRSDC>i:3 is serial Iv reu~.able but nr.,t alway,;. r·e-entr·ar,t. Mc,r-e
SPecificallv, vour inter-ruPt routine should not make use of the
supervisor calls, since under some conditions this will Produce
unpredictable results.

•

•

•

•

M O D E L I I T R S D O S

5 / I N D E X

•

•

•

•

•

MODEL II TRSDOS

INDEX

AGAIN
APPEND
ARCV
P-1TX
ATTHIB
AUTO

!Y,Ct··(Uf'
BINDEC
BINHEX
8RCV
B'l X
BUILD

CLEAR
CLOCf<
CLOSE
CLS
Command
Ci:,mment
Cornr.c;utational
COPY
CREATl'c

.

..
SuP-er·visi:1r·

DATE (Librarv Command)
(Supervisor Call) DATE

DEBUG
DELAY
Delimit;;r•
DIR
DIRRD
DIRWR
Diskette Or9anization
Disk Fil ;;c;.
DISf'\ID
Disk Nam0s
DOu ,, ,, .. ,, ,,
DOGCMD
Dr·i V0

DUMP
Dvnamic Allocation

Enterin9 a Command
EHRMSG

C<:irnmand)
Cal l)

ERROR (Libr-an-·
ERROR :SuPer·viso~
Error Codes and Messa9es
Error Codes and Messa9es

Ca'lls:

ilis.t)

INDEX

PAGE
u:,
17

11+5
146

1';>
21

70
132
133
J.47
14B

27
127

2B
9
9

129
29
:u

~311.

136
:35

1:5111
9

45
12'+
12~1
76
T7
91
12
48
9'+
1l
~)0

Tl

6
97
51
96
84
85

PAGE l

MODEL I I Tl~SDOS II\IDEX

File Access Supervisor Calls 118
Fi ·1 f~ :; P(:• C i f i Cat i On ,, ... ,. " " • ., • • " .. " " " • " ,. 1 ~1
Fixed Len9th Recor·ds 78
FOPMAT " " •••• "" " •••• " ••••• " ".. • 1:2
F' (> F~\"lt~, .. " ,, ,. ~j :2:
1·· 1·11:cl::: " " " • " " " • • • • • • • • .. • 5.,,

General Infor·mation 2
Gr·aPhii::;:. Mod,e ... 103

High Me mi:, r· ··{ Co mm-3. n d :::. ,., • • • 1 ~)
How to Use Supervisor Calls ,, 82

I ., ., • • " • If " • • • It ,. ., n • • • • u • " • • • " • • " • • • • • n • • • • • n " • • • ::,6
II\IITIO

J·p;,:DOS

l·\F!-CHAP
f<BII\IIT
l·\BL..II\IE

• ttu,.,rn • n • nn••,. •••••••••••••••""""""

"""" • • • "" "" •" u u"" •" n • •• • • n """"" • n n • n • •" •

• .,,.,.,..,.,.,,,.., .. ,..,nnu"""""""""""""""""""""

93

H'II~

:I. !ii 1
KeYbQar·d SuPer·visoP Calls 98
KILL (TRSDOS Command) 57
KILL (SUP~Pvisor Call),128

!..~IE?, .. ., '.'.:d:3
L .. ibr·a.r··y· C:ornrna.nds .. ,, .,, ., ,, ,, ., ., ,, ,, ,, ,, ,, .. ., 1:)
Line Printer Supervisor Calls """"""""""" .. .,~., .. ,.114
L.. I sRr ,, ., ,, ., ., ,. .. ., ,, ,, • ., ., ,, ,. .,, .,,, ,, ., .. ., ,, ,, :.) 9
I .. OAD " " " • • .. • • .. • .. • • 6:2
Load i n9 TRSD()S,,, ., ., ., ., ., ., ,, ., .. ,, .. ., ., ,, ~:)
L.OCATE ,, " ,, • " • " " •••••• 1. ::26

t'len-10 r---(Re·:::iu l f'·f!O'lf.' r1 t '.;:'. ., ., .. ., ., ., ., ., ,, ,, ., ., a n ., ., ,, ., a a ., ., • ., ,, ,. • LJ,
MPYD I \I " " .. " LY+

r~-!1:1-l:a.tiQn ,. ,, ,, ., ., ,. n,.,. n n,. n •.,",.",. •"",. " .. " •""" u •" u" .. u •
.-,
.,::.

0 PEN " " • " " :l 1 "I
(lpi:ions,,., .. ,, .. .,,,, .. .,n E'.J

Pl',Hi3Ef1 " " " 137
F'a.SS-UJor·d:.::. " .. " " •• "" n"""" .. " "" n"" .. """ " " .. :1.:-;;:
PAUfJE " " " • • • .. • • • 6:3
PFlCHAH " ... " :l 16
F1r-e---A 11 i:i1::;a.-t:: ion ,, ,, ,, .. "".,,,.,,,",,,,,,,,,,,."" .. ,,",,",.".,.,,,,.,,,, ·7 .. 7
PPII\IIT ... i.15
Pm__ I NE .. " .. " " 1. 1 7
F'POT " " • " .. • .. • • • .. 65
P\.!fl(;E " " " ... " • • .. <'A

FlAI\IDOl"I ... l 3 l.
l'lEADI\JX " " .. " •••• ,, l :2:2
F-~t,c1:ir·d L.en9th ,.,

•

•

•

•

•

•

MODEL II TRSDOS

Record Processing Capabilities
RENAME
HETCMD
HS~~~-,:S:2C

Sc:r-c 11
Ber·ia 1
Eif:cTBRK
1,ETCOM
[:ETUSR
Sr>~1n rd n9
f; l'CMP
STSCAN

Mo di?., .. ,.
C,;;mm1..1n i cat i ,:ins

fiuper-vi ~-or· Ca 'I 1 s
B·y·nta><
System Contr·ol Supervisor Calls

Technical Information
TIME
Til'1ER

Usin9 the Kevboard
Utility Pro9rams

Variable Len9th Records
VDCH,•'.\R
VDGRAF
VDINIT
VDLINE
VDREAD
VERIFY
Vid<.;,,o Di:l.Fl,:if.Y
VIDt-,EV

Call:'!-

INDEX

~!RITNX """"""'""""""""""""""~"~"""""n""""""""

Bl1l
66
95

143

102
14·2

911)
66.1
89
78

135
:1.1+1
86

8
87

75
67

5
69

78
106
108
11115
107
110
68

102
i 11

...... 1:23

PAGE 3

llad1e lhaeK

TRS-80 Model 11
. BASIC

Reference Manual
A Description of the Model I I

BASIC Programming Language: Definitions,
Syntax, Examples and Sample Programs

CUSTOM MANUFACTURED IN THE u SA BY RADIO SHACK I A DIVISION OF TANDY CORPO~ATION

RADIO SH ACK CRI

M O D E L. l I B A B I C

L. A N G U A G E R E F E R E N C E M A N U A L.

(c) CoPY~i9ht 1979 bv Micr·osoft, Licensed to Radio Shack,
A Division of Tandy Corporation, Fort Worth, Texas 76102

•

•

CONTENT13 -====================~=~=======~=======; ______ ,,_, ____________ _
CHAPTERS
1., U:..in<;I Mi:,de'I I I BA~Jl C

BASIC f,-,Yw(,r·ds

.... " " " 1

• • • • • • • • • ·19

• • • • • • • • • • • • • • • .5 5

q. Fila Access Techniques •••.••....••••••••••••.••••• ~21

s. Usina the Lina Editor •••.•••.•••.••••••••..•.••.•• ~37

APPENDICES
A ~. HE•S€!PV€d W,:i r· d s-, ••••••••••••••••••••....... 247

B • Error Codes and Messa9es ., ., " 249

• ••.••••••••. 251

INDEX

•

•

•

MODEL II BASIC CHAPTER 1 PAGE 1

IM2BASIC1 B/9/791

1 I Using Model II BASIC

General Information

Model II BASIC is an easv-to-use, extended version of the BASIC
Pro9rammin9 lan9ua9e. It is desi9ned to run under the TRS-80 Disk
OPeratin9 Svstem (TRSDOS), and is included on the Svstem diskette.

Model II BASIC executes Your Pro9rams directlvu It does not Produce
a low-level, machine-lan9ua9e trar1slation. In technical terms, it is
an interpreter, not a comPiler. This makes it especially Powerful
for interactive use durin9 Pro9ram development and debu99in9~

Model II BASIC offers all the standard features of the lan9ua9e,
Plus several imPortant additions, including:

Pro9ram line ren,Jmberin9
Line editor for easy Pro9ram corrections and chan9es
Abilitv to execute a TRSDOS command and return to
BASIC with Pro9ram and variables intact
Direct and sequential access to data in disk files
Special functions to allow'BASIC Pr·o9rams to call
machine-lan9ua9e subroutines
Recovery from operator errors--the Svstem won't stoP
if You attempt output to a device (such as a Printer or
Disk Drive) which is not readv •

MODEL I I BNH C CHAPTER i P/-1GE 2

About This Reference Manual

l~1is manual describes the keYuJords, data tYPes, and other features
which ar-E! ;:1v,:1.i·lab·l-2 tn Mode"I II f)l~SIC .. You 1 1 "l firid f;:,1,r:ntY of
examples and ·samPle P~oer·ams to help YOU trY out tt1e 1an9ua9e~ Tt,ere
is also a G1ossarv in the APPendix~

CHAPTER l. Using Model II BASIC
A .. Gen-er·a1 1n'fi::1r·ma.--l:ion
B .. Ni:1'1:,ation
C~ Memory Re~uirements
D. Loading BASIC
F.
F.

M<1de:::.
U:s.in9

G,, Us.in9

of 0P1t-'rati,:,n
the l'\ff:··r:-boar·d
the Video Display

CHAPTER 2. BASIC Concepts
A., Data

1~ Data Stor~9e TvPes
a~ Numb~rs Cinte9er, 8in9le and Double Precision)
b .. Str·ingg

:C'.n Con::d::antz.
a~ Numbers and Strin9s
b~ Tvpes of Constants

:5~ v~.riabl-2:·::.
a.~ Nam.es
b. TYPe Declaration

i~ D~fatilt tvP~S
ii. Tags l!,#,%1$)

c., l:ii.r· r-a.y;;;.
4n Data Conversjon

B. OP<&1r·ati0ns
L St«t0ments
2,. E>=:Pr·es:::.ieir,s

a~ Oper-atcir:::.
i., Ar·i thmet i c
ii~ Lo9ical, f~elational, and Boolean
iii~ ~3tri.n~l

b .. Evaluation of Expressions
i., Par~::ntht::=.-2:;
ii~ Order· of •Per·ations
iii. TYPe Conversions

c:~ Functi,:iri::.

•

•

•

•

•

•

MODEL. I I BASIC

CHAPTER 3. BASIC Kavwords
A. Sta tarr,a r, ts.

1 .. Ci:1mmand
2. Pr· o9 r-am

CHAPTER 1

a. Definition and Initialization
b .. As~.i9nm,erii:
c .. Pro9ram Sequence
d .. Ir11::i.ut/OutPut

3 .. Debu99in9 Tools
B. Function~.

1 a ComPutationa.1
2 .. InPut/Outp1_1t
3 .. Special Functions

CHAPTER 4. Fila Access Tachni9uas

CHAPTER 5. Usin9 the Lina Editor

APPENDICES
A. Reserved Word List
B .. Error Codes and Messages
C .. Gl c1::.sar···..-

• INDEX

For More Information

PAGE 3

If vou are a newcomer to BASIC, vou'll Probablv need a 9ood
Pro9rammin9 manual to use alon9 with this book .. Here are a few we
r·e1:ommer,d:

BASIC AND THE PERSONAL COMPUTER, Thomas Dwvar and Mar9ot
Critchfield; Addison-Weslev Publishin9 ComPanv, 1978 ..

BASIC FOR HOME COMPUTERS: A SELF-TEACHING GUIDE, Bob Albracht, LaRov
Finkel, and Jerald R .. Brown; Wilev & Sons, 1978.

BASIC FROM THE GROUND UP, David E. Simon; Havdan Book Com~anv,
1978.

ILLUSTRATING BASIC, Donald Alcock; Cambrid9a Univarsitv Prass,
1977 .

MODEL II BASIC CHAPTER 1

Notation

For claritv and brevity, we use some special notation and tvPe
stvle£ in this manual~

CAPITALS and Punctuation

PAGE 4

Indicate material which must be entered exactly as it aPPearsa (The
onlv Punctuation svmbols not entered are triPle-Periods, explained
belowa) For· example, in the line:

PRINT "THE 'l'IME IS" TIME$
every letter and characte~ should be typed exactly as indicated.

lowercase italics
Represent words, letters, characters or values vou suPPlY from a set
of acceptable valLJes for a Particular command~ For example, the
1 i ft€<:

LIST 1 i r,e-rarr9>c.•
indicates that vou can supply anv valid line-ran9e sPecificatior1
(defined later) after LIST.

1e·11 ips.is.)
Indicates that Pr·ecedin9 items can be repeated~ For example:

INPUT vai-·iable,
Indicates that several variables mav be repeated after INPUT.

I
This special svmbol is used occasionallv to indicate a blank space
character (ASCII code 32)n For example:

INPUT "WHAT IS YOUR NAME?)l'";N$
The V indicatas that thara is a sin91e blank spaca after the
•:;;11Je;£.tir:1n mark ..

<•::t.:a.aa, bbbb>
Indicates a numeric rang~ with lowe~ limit aaaa and UPPer limit
bbbb. Both limits are inclL1ded in the ran9e~ For example:

<--~"l2768, 32767>
represents the r·an9e of numbers from -32768 to 32767 inclusive. The
context will specify whether inte9ers or real numbers are intended~

X'NNNN'
Indicates that NNNN is a hexadecimal number. Numbers used in this
manual are in decimal form, unless otherwise noteds For example:

X ' 711ll1lA'
is a hexadecimal representation of the decimal number 28682.

O'NNNNN'

•

•

•

•

•

MODEL II BASIC CHAPTER 1 PAGE 5

Indicatas that NNNNN is an octal numbar. Numbars usad in this manual
are in decimal form, unless otherwise noted. For example:

0'17707'
is an octal representation of the decimal number 8135.

<kevname>
Indicates one of the kevs, usually a special control key like
<ENTER>. For axamPla:

PRINT "THE TIME IS" TIME$ <ENTER>
indicates vou should Press <ENTER> after tYPin9 in the text.

<CTRL-kavnama>
Indicates a control character. To output the character, hold down
<CTRL> and Press the specified kev. For example:

<CTRL-R>
Indicates that vou should hold down (CTRL> and Press <R>

MODEL II BASIC CHAPTER 1 PAGE 6

Mamorv Ra9uiramants

BASIC occupies 14 9ranulas 117920 bvtasl on the Svstem disk. It
loads into memorv startin9 at the be9innin9 of user memo~v, 10240.
The amount of memory re~uired bv BASIC depends on how manv
concurrent data file vou specify when vou load BASIC.
During 1oadin9, vou can also to reserve a Portion of hi9h memorv for
stora9e of machine-lan9ua9e subroutinesu

Here's a memorY allocation map:

DECIMAL
ADDRESS
0

10240

HEX
ADDRESS

•----------------------------------:X'0000'
:

' TRSDOS

: --------------------·-------·--·----·--: X' 28011'!'

:-

'

'

BASIC & SOME TRSDOS COMMANDS.;;,

BASIC INTERPRETER
&

USER PROGRAM TEXT '

:: ---------------------·-------------::
RESERVED FOR YOUR MACHINE­

LANGUAGE ROUTINES (OPTIONAL)
TOP** :----------------------------------: TOP**

: MAY BE RESERVED BY TRSDOS FOR
SPECIAL PROGRAMMING

32767 or:--------Last Mamorv Addrass-------:X'7FFF' or
65535 X'FFFF'

* Certain TRSDOS commands use memorv in the ran9e <X'2800,X 1 2FFF'>.
See "Library Commands 11 in the TRSDOS Refe~ence Manual f0r a list.
All TRSDOS commands except for these can be called from BASIC via
the BASIC command, SYSTEM.

•• TOP is a memorv Protect address set bv TRSDOS. If TRSDOS is not
Protecting high memo~y, then TOP is th• same as Last Memorv
Address.

•

•

•
MODEL II BASIC CHAPTER 1 PAGE 7

L,:,adin9 BASIC

See the Operation Manual for instructions on connection, Power-up
and insertin9 the System diskette.

Note: A SYstem diskette must be in Drive 0 (the built-in unit)
whenever the Computer is in use. Whenever the Computer is turned On
or Reset, it will automatically load TRSDOS from Drive 0.

After the Svstem starts UP, it will Prompt vou to key in the date.
TYPe in the date in MM/DD/YYYY form and Press <ENTER>. For axamPla:

07/25/1979 <ENTER>
for· July 25, 1979.

Next the Svstem will Prompt vou to kev in the time. TO SKIP THIS
QUESTION, Prass <ENTER>. The time will start at 00:00:00.

TO SET THE TIME, type in the time in HH.MM.SS 24-hour form. Periods
.are used instead of colons~ since thev're easier to tvPe in. The
seconds .SS are optional. For examPle:

14.30 <ENTER>
for· 2 : 30 PM.

• The S··{stem wi 11 r-ecor·d the date and time inter·nal l·y· and r·etur·n with
the me::.s-.,ag~;;,.:

•

TRSDOS READY

You can now load and execute BASIC. The simPlest way to do this is
t O t··{Pe:

BASIC <ENTER>
BASIC will load (takes several seconds) and disPlav a start-up
heading like this~

Radie• Shack TRS-80 M,:,del II BASIC Vers 1,1
vvxvv BYtes free, 0 files
Read·y·
>

XXXXX bvtes free tells You how much memory is available for stora9e
and execution of BASIC Pro9rams" 0 files tells vou that no data
files can be •Pened from BASICR If YOU want to •Pen data files, vou
need to specify how manv when vou load BASIC (see next Para9raPhs)"

MODEL II BASIC CHAPTER 1 PAGE 8

Options for Loading BASIC

There are several other wavs to start UP BASIC, as summa~ized in
this block•

'

'
:
I

'

BASIC Program -F•files -M•address
Pro9ram is a TRSDOS file specification for a :

BABIC Program. After start-uP, BASIC will run 1
it. If pp,:,gr-am is ,:,mitted, BABIC u>i 11 s:tar-t-•JP
in the command mode" :

-F:files: tells: BASIC the maximum number- of files •
that mav be Open at once~ files is a number
from 0 t,:t 15 .. If -·F=fi le::;. i;:. omitt-e:d, maximum :
is. set tc, 0 ..

-M•address: tells BASIC not to use memory
above address. address is a decimal number~
If -M:address is omitted, BASIC uses all
memory UP to TOPn

The options allow YOU to specify any or all of the following:
A Pro9ram to run after BASIC is started.
Maximum numbe~ of data files that may be Open at once.
The 1ar9er the number of files, the less area available
for s.t,:ir·ir19 and e>::e-t.:utir,9 v,:;iur, Pr•ogr••::1.mstt \Each fi 1e YOU
specify takes 834 bytes of memorv.) So use the
smallest value that will suit vour needs.
Hi9hest address to be used bv BASIC during Pro9~am
execution. Omit this unless YOU are 9oin9 to call
machine-1an9ua9e subroutines~

TRSDOS r,EADV
BABIC <ENTER>

Tells BASIC not to run a Pro9ram, but to enter the command mode; to
allow fo~ zero concurrent files; and to use all memory available
f~om TRSDOS.

TRSDOS READY
e,ASIC -F: 1

Just like the Preceding example, except that onlY one file can be
Open at any 9iven time.

TRSDOS READY
BASIC -M:32000

BASIC wr.,n't allow Ytn,1 t,, (>per, any files,, ar,,:l 32011'HZ) is the hi9hest
address it will use during Program execution.

TRSDOS READY
BASIC PAYROLL -F:;3

•

•

•

•

•

•

MODEL II BASIC CHAPTER 1 PAGE 9

BASIC wi 11 star·t up, 1 oad and run the BASIC PrC•9ram PAYROLL; three
data files can be ()paned, and BASIC can use all mamorv available
from TRSDOS .

MODEL. II BASIC CHAPTER 1

Modes of Operation

BASIC has three modes of operation:
Command mode--for tvPin9 in Pro9ram lines and immediate
lines
Execute mode--for execution of Pro9rams and immediate
l i nes
Edit mode--for editing Pro9ram and immediate lines

Ci::•mman d Mo de

PAGE 10

Whenever vou enter the command mode, BASIC displays a header and a
s-Pf,~cial Pr·ompt:

Read·y· (header·)

> (Prompt followed bv blinking block
"cur·sor· 11)

While YOU are in the command mode~ BASIC will display the prompt at
the be9innin9 of the current lo9ical line (the line vou are tYPin9
in) ..

A lo9ical line is a string of UP to 255 characters and is always
terminated with a carriage return (stored when vou Press <ENTER>)R A
pf'rts-ical line, on the other· hand, is one line on the DisPlaY.. A
PhYsical line contains a maximum of 80 characters.

For example, if You tYPe 100 R's and then Press <ENTER>, YOU will
have two PIY·•··~.ical 1 ine5, but only one lo9ical 1 ineD

The blinking block is called a cursord It tells You where the next
character You tYPe will be disPlavedD

In the command mode, BASIC does not take vour inPut until YOU
complete the lo9ical line by Pressing <ENTER>. This is called »line
input 11

, as oPPosed to "character inPut"R

Interpretation of an InPut Line

BASIC always i9nores leading spaces in the line--it Jumps ahead to
the first non-space character .. If this character IS NOT a di9it,
BASIC treats the line as an immediate line. If it IS a di9it, BASIC
treats the line as a Pro9ram lineR

For· e>=:amPle:
Read··t
PRINT "THE TIME IS" TIMES <ENTER>

BASIC takes this as an immediate line.

If You t··tPe:
Ready
10 PRINT "THE TIME IS" TIMES <ENTER>

BASIC takes this as a Pro9ram line.

•

•

•

•
MODEL II BASIC CHAPTER 1 PAGE 11

Immediate Line

An immediate line consists of one or more statements separated by
colons .. The line is executed as soon as vou Press <ENTER> .. For
exa.mpl e:

Read·,,
CLS• PRINT "THE S0.UARE ROOT OF 2 IS" S0.R(2)

i'.:- ar, immediate line .. When ··..-ou Pre::.'.=, -<ENTEli">, BASIC e:x:t"cu·l:e.'.::- it ..

Pr-o9r·a.m Line

A Pro9ram line consists of a line number in the ran9e <0,65535>,
followed bv one or more statements separated bv colons .. When vou
Press <ENTER>, the line is stored in the Program text area of
memorv, along with anv other lines vou have entered this wav. The
Pro9ram is not executed until vou tvPe RUN or another execute
command .. For example:

1121121 CL.S: PRINT "THE S0.UARE ROOT OF 2 IS" S6lR(2)
Is a Pro9ram line. When vou press <ENTER>, BASIC stores it in the
Pr·o9ram text area. To execute it, tvpe:

RUN <ENTER>

• Special ~'\e·v·s in the Command Mode

<?>

< .. >

<'>

•
E::.::ecui:e Mode

When used in an immediate line, the question
mark can stand for the commonly used kevword
PRINT. For exampla, tha immediate lina:

? "HELLO."
is the same as the immediate line:

PRINT "HELLO."
Note: 11 L?" does NOT mean "LPRINT".

The Period can stand for ''current Pro9ram line",
i.e., the last Pro9ram line entered or edited.
The Period can be used in most Places where a
line number would normally appear.
the immediate line:

LIST.

For· example,

tells BASIC to list the current Pro9ram linea

The sin9le-9uote tells BASIC to i9nore the rest
of the 1i:,9ical 1 ine. It is an abbr·eviation f1:ir·
the BASIC kevword REM. When used in a
multi-statement line, it does not have to be
Preceded bv a colon. For example, when vou type
in the line:

PRINT 1+1 ' 2+2
BASIC will Print tha sum 1+1 but not 2+2 .

MODEL II BASIC CHAPTER 1 PAGE 12

Whenever BASIC is -Aecutin9 statements (immediate lines or Pro9rams)
it is in the execute mode. In this mode, the contents of the Video
DisPlaY are under Pro9ram control.

Special Kevs in Execute Mode

<HOLD>

<BREAfG-

Pauses execution. Pr·ess a9ain to cor1tinue.

Terminates execution and returns vou to the
command rr11:i de ..

BASIC includes a line editor for correctin9 command or Pro9ram
lines. You can also use it to correct kevboard inPut to an INPUT
'.£:.tatement.

To edit an immediate line, Press <Fl> BEFORE vou have Pressed ENTER~
To edit a pro9ram line, tvPe in the command:

EDIT line number·
where line number specifies the desired line.

When the editor is workin9 on a Pro9ram line, it disPlavs the number
of the line being edited. When the editor is working on an immediate

•

1 ine or a. 1 ine bein9 inPut TO an INPUT s-tatement, it dis-Pla·-.--s a ! •
symbol in the first column on the line.

In the edit mode, KeYboard inPut is character-oriented, rather than
line-oriented. That is, BASIC takes a specified number of characters
as soon as they are tvPed in--without waitin9 for vou to Press
<ENTER>.

See "Usin9 the Line Editor- 11 for detailsa

•

•

•

•

MODEL II BASIC CHAPTER 1

Usin9 the Kevboard

BASIC has two wavs of inPuttin9 data from the kevboard:
Line InPut--BASIC does not take the inPUt until YOU
Prass <ENTER>.
Character InPut: BASIC takes a specified number of
characters without waiting for YOU to Press <ENTER>R

PAGE 13

In the command mode, BASIC uses line inPut. In the edit mode, it
uses character inPut. Both tvPes of inPut are available in the
execute mode. Saa INPUT, INPUTS, LINE INPUT, INKEYS.

Kevboard Line InPut

When vou tvPe number, letter, and Punctuation kevs, BASIC inPuts
them into the current line. Certain other kevs and kev combinations
have special meanin9s to BASIC. Control kevs not
mentioned below are i9nored during line inPut.

<BACKSPACE> BacksPacas the cursor, arasin9 the Pracadin9
character in the line. Use this to correct
tvPin9 errors. <CTRL-H> is the same code •

<SPACEBAR>

(Fl>

<BREAK>

<TAB>

<CTRL-J>

Enters a blank space character and advances
the cursor.

Puts You in the Edit Mode. The current line
will be edited. Saa "Usin9 the Lina Editor."
<CTRL-A> is the same code.

Interrupts line entry and starts over with a new
line. <CTRL-C> is the same coda. <BREAK> is
echoed to the DisPlay as <carat> C.
Advances the cursor to the next 8-character
boundary. Tab Positions are at 0,8,16,24, ...
Use this for indenting pro9ram lines. <CTRL-I>
is the same code.

Line feed--starts a new PhYsical line without
ending the current lo9ical line •

MODEL II BASIC CHAPTER 1

(Keyboard Line InPut, continued)

<CTRL-O>

<CTRL-R>

<CTRL-U>

<ENTER>

<REPEAT>

To99les (switches the state of) the DisPlav
function, i.e., turns it on or off.

If the DisPlav is on, <CTRL-O> turns it off.
Subsequent characters tvPed will not
not be echoed to DisPlav, but will be inPut
into the current line. Anv Pro9rammed output
to the DisPlav will also be i9nored.

If the DisPlav function is off, <CTRL-O> tur·ns
it on. Subsequent characters tvPed will be
echoed to the DisPlav.

Whenever BASIC enters the command mode, it
tur·ns on the DisPlav function.

<CTRL-O> is echoed as <carat> 0.

RetvPes the currrent lo9ical line.

Restarts the current lo9ical line (thou9h the
old line remains on the Displav). The kev is
echoed to the disPlav as <carat> Ug

Ends the current lo9ical line~ BASIC will
take the line~

For convenience when You want to repeat
a sin9le kev, hold down <REPEAT> while
Pressing the desired kev~ For examPle, to
backspace halfway across the Display, hold
do~n <REPEAT> and <BACKSPACE>.

Kevboard Character lnPut

PAGE 14

In this mode, kev inPut is not echoed to the disPlavg Anv kev vou
Press is accepted as inPut, except for <BREAK>, which interrupts the
inPut and return vou to the command mode~

•

•

•

•

•

•

MODEL II BASIC CHAPTER 1 PAGE 15

Usin9 the Video DisPlav

Model II BASIC 9ives vou easy access to the Video DisPlav,s full
character set, includin9 all standard ASCII svmbols and 32 special
9raPhics codes .. Everv character can also be disPlaved in reverse
(black on white).

The DisPlav has two modes of oPeration--Scroll and Graphics .. Cur·sor
motion and Position-labelin9 are different in the two modes ..

Bcr·i:•11 Mode

In the Scroll Mode, the DisPlav can be thought of as a sequence of
1920 disPlav Positions, as illustrated below:

:---:
Lin<? 0
Line 1

Line :2:2
Lin<? 23

0, 1, 2, 3,
80, 81, 82, 83, ..

1760,1761,
18Lf(1), 1811,1,

78,79
159

.1838,1.839

.1918, 1919
:---:

DISPLAY POSITIONS, SCROLL. MODE

In scroll mode outPut, each time an acceptable display character is
received, it is disPlaved at the current cursor Position, and the
cursor advances to the next hi9her numbered Position.

When the cursor is on the bottom line and a line-feed or carria9e
return is received, or when the bottom line is filled, the entire
DisPlav is 11 scrolled":

Line 0 is deleted
Lines 1-23 are moved UP or1e lir1e
Line 23 is blanked
l'he cursor is set to the be9innin9 of line 23 .

MODEL II BASIC CHAPTER 1 PAGE 16

GraPhics Mode

In the GraPhics Mode, the DisPlav can be thou9ht of as an 80 bv 24
matrix, as illustrated below:

C O L U M N
:--:
: 0 1 2 . 77 78 79:

:-----:--------------·-------------------------------:
0

R 1

0

w

2

21
22
23

DISPLAY AREA

:-----:---:
DISPLAY POSITIONS, GRAPHICS MODE

In 9raPhics mode
moves bevond the
Current Position

column 79
column 0
row 23
row 0

output, the cursor "wraPs 11 the disPlav whenever it
row or column boundaries~ That is:

Direction

forward
back
down
UP

New Position

column 0, same row
column 79, same row
row 0, same column
row 23, same column

•

•

•

•

•

•

MODEL II BASIC CHAPTER 1 PAGE 17

Video DisPlav OutPut

All output to the DisPlav is done via PRINT statementsu To send
actual codes to the DisPlav, use the CHR$ function.

For· e::.::amPle:
PRINT CHR$(26)

Sends code 26 to the DisPlav, which sets the reverse mode.

Th• tabl•s b•low summariz• th• Mod•l II BASIC DisPlav cod•s.

:--------·------------:-----------------------------------:
Code

•D•cimal H•xad•cimal DisPlav Function
:--------------------:-----------------------------------:

1 1211
2 12:r-:. L

4 8 1218
9 09

:
: 1121 121A
:

13 121D

23 17

2L~ 18

25 19

26 1A

27 1B

28 1C

: 29 1D

252 FC
:
:

Tur·ns on cur·s.or·
T1Jr·ns- i:1ff cur·s.or·
Backspaces cursor and erases
Tabs cursor to next 8-character

:

boundarv :
Line feed. Moves cursor down one

: row without changing column positiono:
Moves cursor to start of next

line
Erases to end of line, cursor

doe'.:-n't move
Erases to end of screen, cursor :

doe:=.n't rr11:ive
Sets normal (white on black)

disPlaY mode :
S•ts r•v•rs• (black on whit•>

disPlaY mode
Erases screen and homes cursor

(position 0)
Scroll mode cursor motion:
Moves cursor back one Position

without erasin9.
: Scroll mode cursor motion:

Moves cursor forward one Pos­
ition; if old Position= 1919,:
disPlav is scrolled UP one
line and new position= 1840~

Graphics mode cursor motion:
Moves cursor back one column;

column=column-1. If column=©,
new column=79. row is
unchan9ed •

: --------------------: _____ ,ww __ w ____ M _____ M __________________ :

MODEL ll BASIC CHAPTER 1

<DisPlaY control codes, continued)
:------·--------------•-----------------------·------------:
' C1:idf:
:Decimal He:: .. ~ad-!>cimal
: ---------~,..-~ ... ----~------: -~---------------------~---~--· .. ···------;

253 FD

'

254 FE

:
: 255 FF

:

'

: . .
'

GraPhics mode cursor motion:
Moves cursor forward one column;

c,,lumn=ci.:ilumn+l .. If column
=79, new column=0

GraPhics mode cursor motion:
Moves cursor UP one row; row= :

row-1; if row=0, new row :
=23 '

GraPhics mode cursor motion:
: Moves cursor down one row; row=
: row+l; if row=23, new row

c,11)

'

GraPhics Characters are codes 128-159~ To see them, run the
Pro9ram:
10 FOR 1=128 TO 159
20 PRINT I; CHR$(l),
30 NEXT

PAGE 18

Standard ASCII characters (uPPer and lowercase letters, numbers and
Punctuation> a~e codes 32 to 127~ To s•~ them, run the p~o9ram:
40 FOR 1•32 TO 127
50 PRINT II CHR$(II,
60 NEXT

•

•

•

•

•

•·

MODEL II BASIC CHAPTER 2 PAGE 19

(M2BASIC2 8/9/79)

2 / BASIC ConcePts

This section contains the back9round info~mation you~11 need to
write Programs in Model II BASIC. It describes the tvPas of data
!information) BABIC can handle, and the operations BASIC can Perform
on the data.

A Pro9ram consists of one or more numbered lo9ical lines, each lin•
consisting of one or more BASIC statements. BASIC allows line
numbers from 0 to 65529 inclusive. The Pro9ram lines can include UP
to 255 total characters including the line numbe~~ and mav be broken
into two or more PhYsical lines~

line
number·

11110
110
120
130

BASIC
st~ t;:<mer,t

i:olon beri:ween
s.tataments

CLS: PRINT CHR$126) "THIS
FOR I=1 TO 10000: NEXT I
PRINT CHR$12'> l;:
CLS: PRINT 'THIS IS NORMAL

B,<l,SIC
!:.tatement

IS REVERSE MODE"
'DELAY LOOP

MODE'

When BASIC executes a Proaram, it handles the statements one at•
time, starting at the first and Preceding to the last. Soma
statements allow vou to ~han9e this se9uence. (See Pro9ram Sequence
Statements.)

Sta.t.f:ment

A st.att:ment is a comF1'C'te iris.tr·uction t.:o BASIC, tB-11 in9 th-€! ComPuter­
to Perform some operations~ If the oPerations involve data, the
statem~nt rnav include that, too. For example,

PRINT "THE S<ilUARE ROOT OF 2 IS" S<ilR(2i
is a complete statement* The number 2 is the data, and the
oPer·atii:,ns. ar-e:

DisPlavin9 the messa9e in quotes
Computing the z~uare root of 2
DisPlaving the resultant value

MODEL II BASIC CHAPTER 2

Data.

BASIC can handle two kinds of data:
Numbers, representing quantities and subJect to standard
mathematical operations
Strin9s, rePresentin9 se~uences of characters and subJect
to SPecial non-mathematical strin9 operation~

PAGE 20

Each kind of data has its own memorv stora9e r•quirement and its own
ran9e of values~

Numer· i c Data

BASIC allows three tYPes of numbers: inte9er, sin91e-precision and
double-Precision~ You can declare the tvPe of a number, or let BASIC
assi9n a tvPe~ Each tvPe serves a specific purpose in terms of
Pr~cision, SPeed in arithmetic OPerations, and ran9e of possible
values.

To be stored as an inte9er tvPe, a number must be whole and in the

•

r·aM31? <~32768, 32767>. An int1?9er· v,a.1 U<Sif re«1Jir•<Sifs two b·,,-t,~>- ,)f memor·Y •
for stora9e~ Arithmetic operations are fa~test when both ope~ands
a.re i rd:e<;Jer-s.,.

For, <E:<>::amf~·1e:
1 321Zlil.llZJ -2

can all be stored as integers,.

Sin9le-Precision TvPe

500 -··12345

Sin9le-pr~cision numbers can include UP to 7 si9nificant di9its, and
can represent normalized values* with exPonants UP to +/-38, i.e.,
numbers in the ranee:

<-1 X 11ZJA381 -1 X illJA-38) (1 X IIZJA-39, 1 X 10A38}
A sin91e-precision value requires 4 bvtes of memorv for stora9e,.
BASIC assumes a number is sin9le Pr·ecision if you do not specify the
level of Precision~

*In this r·eference manual, normalized value is one in which exactly
one di9it appears to the left of the decimal Pointg For example,
12.3 ~xPressed in normalized form is 1 .. 22 x 10.

For- ~>.:amPl f1::
10.001 -200034 1. 77L>E6 6.024E-23 123. ,,567
can all be stored as sin9le Precision valu@s.

NO-TE
When used in a decimal number, the symbol E
stands for »sin9le-precision tirn•s 10 to the Powe~ of ••• 11 •

•

•

•

MODEL II BASIC CHAPTER 2

Therefore 6.024E-23 represents the sin9le-Pr·ecision
value 6.024 x 10A-23

Double-Precision TvPe

F'AC.;E 21

Double-precision numbers can include UP to 17 si9nificant di9its,
and can represent values in the same range as that for
sin9le-precision numbers. A double-precision value requires 8 bvtes
of memorv for stora9e. Arithmetic operations involvin9 at least one
double-precision number ~r·e slower than the same operations when all
operands are sin9le-precision or inte9er.

For· e::-::ampl,a:
1010234578 -8.7777651010 3.1415926535898979 8.00100708D12
can all be stored as double-precision values.

NOTE
When used in a decimal number, the svmbol D
stands for 11 double-Precision times 10 to the Power of •.• 11

Therefore 8.00100708 D12 represents the value
8.00100708 >(10"12

Str·in9 Data

Strin9s (sequences of characters) are useful for storing non-numeric
infor·matii:1r1 s-uch as. names., addresses, te>::t, etc .. An··{ ASCII cha-r·a.cter­
can be stored in a strin9. For example, the data:

Jack Brown, A9e 38
can be stored as a strin9 of 18 characters .. Each character (and
blank) in the string is stored as an ASCII code, requirin9 one byte
of stora9e .. Th~ above strin9 would be stored internally as:

Hex :--:--:--:--:--:--:--:--:--:--:--:--:--:--:--:--:--:--:
Code-•4A•61•63:68:20,42,72:6F•77:6E:2c,20,41,67•65•20•33•38:

:--:--:--:--:--:--:--:--:--:--:--:--:--:--:--:---:--:--:
:J :a :c :f,: : : 3 : 8 :
:--:--:--:--:--:--:--:--:--:--:--:--:--:--:--:--:--:--:

A strin9 can be UP to 255 characters 1on9. Strin9s with len9th zero
are called 1'null 11 or 11 emPtY 11

..

D>r.1ta Constants

All data is inFut to a Fro9ram in the form of constants--values
which are not subJect to chan9e. For example, the statement:

F'RINT "1 F'LUS 1 EQUALS" 2
contains one strin9 constant,

1 PLUS 1 E<;!UALS
and one numeric constant,

2

In this example, the constants serve as 11 inPut" to the PRINT
statement--tellin9 it what values to Print on the DisPlav.

MODEL. II BASIC CHAPTER 2 PAGE:

TYPin9 of Constants

When BASIC encounter·s a data constant in a statement, it must
determine the tvPe of the constant (strin9, inte9er~
sin9le-Precision or double-Precision) .. Here are the rules it uses:

I .. I'f th{~ value is enclosed in dou1:i1~~"--:::iu1:it{:;.-:=., it is a
str·in9.. For· €}=:8.mPle, in the statements:

t1$::::: 11 YE•S 11

8$ = 11 3331 Waverly Wav 11

PRINT "1234567890"
the values in 9uotes are automatically cate9orized as
strin9s .. (AS and 8$ are variables, as explained
later in this section ..)

IIu If the value is not in ·=iuot~~::., it is a number· .. * For·
examPle, in the statements~

A= 123001
8 ~, 1
PRINT 12345, -7.32145 E:6

al 1 the da.ta is numer·i 1: ..

*There are excePtions to tt1is rule .. See DATA, INPUT,
LINE INPUT, INKEY$, and INPUT$.

IIIu Whole numbers in the ran9e <-32768,32767> are
integers~ For example, the statements:

A= 123511)
8 = -12
PRINT 10012, -2111ll1ll1l

contain inte9er constants onlv~
IVu Numbers which ar·e not inte9er tYPe and which

contain seven or fewer di9its are sin9le-precision~
For example, the statements:

A = 123<,567
8 = ---1. 23
PRINT 11000.25

all the numbers are sin9le-precision.
V .. If the number- i::1:intains mor·e than ei9ht di9it::., it is.

double-precision. For example, in the statements:
A "' 1:;;-:345678901234'."i67
El ~, - l 11ll1ll2K111l000011l
PRINT 2.777000321

all the numbers are double-precision.

TYPe Declaration Characters

You can override BASIC's normal tvPin9 criteria bv addin9 the
followin9 11 ta9s 11 to the end of the numeric constant:

Makes the number sin9le-precision.
For exa~Ple, in the statement:

A a 12.345678901234'
the constant is classified as sin9le-Precision~ and
rounded to seven di9its: 12~34568

.-,.-,

...:. . .,:...

•

•

•

•

•

•

MODEL II BASIC CHAPTER 2

Makes the number double-precision. For example, in
sta.tement,

PRINT 3# / 2
the first constant is classified as double-precision
before the division takes Place.

PAGE 23

(Addition and the other operations are described later in this
;i.-Efction ..)

Hexadecimal and Octal Constants

Model II BASIC allows two additional types of constants, hexadecimal
and octal numbers.

Hexadecimal numbe~s a~• quantities r-epresented in base 16 notation,
composed of the numerals 0-9 and the letters A-F. Hexadecimal
constants mu!=.t b* ir, the: r·an<.:.te <0,FFFF> .. Th~•y• a:r-~ ~-tor-ed as.
two-bvte inte9ers, corresPondin9 to decimal inte9ers as follows:

<0,7FFF>
<8000,FFFF>

E·'lu i va 1 ant
D<ec ima 1 Ran Ile

<0,32767}
<-32768,-·1>

Anv numb<er Preceded by the svmbol &Hi• interpreted as a hexadecimal
constant. For examPle:

&HA010 &HFF &HDl
are all hexadecimal constants.

&H10 &HlllD

Octal numbers are ~uantiti•s rePr•sent•d in base 8 notation,
composed of the numerals 0-7 .. Octal constants must be in the range
<0,177777>. Th~Y are stored as two-byte inte9e~s, corresPondin9 to
decimal ir,te9<!!rs "·'· follows:

Octa 1 Rar,9e

<0,77777>
<1000011), l.77777>

E·=iuival<!:r,t
Decimal Ran9•

{0,:32767>
<-32768,-·1 >

Anv numb•r Preceded by the svmbol &O or & is interpreted as an octal
constant~ Fc1r·

&70
e>::amP 1 ~:

&044
a.r-~?. ,a.11 octal constant::. ..

&10077 &123407

MODEL II BASIC CHAPTER 2 PAGE 24

Var·iabl<iH-

A variable is a Place in memorv--a sort of box or Pi9eonhole--where
data can be storedn Unlike a constant, a variable,s value can
chan9ea This allows vou to write Pro9rams dealin9 with chan9in9
·:::iuantitie:: ...

Var· iab le Names

In BASIC, variables are represented bv namesu
be9in with a letter, A throu9h z. This letter
di9it, 0 thr·ou9h 9, or· another· lettE>r· ..

Variable names must
mav be followed bv a

For· e::-~amPl e::
A AA A2 e,7 MJ

are all valid and distinct variable names ..

Variable names mav be lon9er than two characters.
first two characters are si9nificant in BASIC ..

However, onlv the

For- e::-::amPl e:
SU SUM SUPERNUMERARY

are all treated as the SAME variable by BASIC.

Certain combinations of letters are reserved as BASIC kevwords, and
cannot be used in variable names. For example:

OR LAND NAME LENGTH MIFFED
cannot be used as variable names, because theY contain the reserved
words OR, AND, NAME, LEN, and IF, respectively.

See the APPendix for a list of reserved words.

TvPes of Variables

As with constants, there are four tvPes of variables. The first
three are numeric: integer, sin91e-precision and double-precision;
the fourth is strin9.

DePendin9 on its tYPe, one variable can contain values from only one
of these 9r·,:iups .•

l'he first letter of the variable name determines what the tvPe
Initially, all letters A through Z have the sin9le-precision
attribute. This means that all variables are sin9le-Precision
is, theY can onlv hold sin9le-Precision values).

For· e::.::amPle:
A e. X1 CY TRS H4

are all sin9le-Precision variables initiallv.

i ~-.

(that

•

•

•

•

•

•

MODEL II BASIC CHAPTER 2 PAGE 25

However, You can assign different attributes to anv of the letters,
bv means of DEFINT (define-inte9erl, DEFDBL (define
double-precision), and DEFSTR (define-string) statements.

Fi:•r· 1,::,::-::amPl e:
DEFf,TI, L

makes all variables which start with L into strin9 variables.
After the above statement, the variables:

L Ll LL L0
can all hold string values, and onlv strin9 values~

TYPe Declaration Ta9s

You can alwavs override the tvpe of a variable name bv addin9 a tvPe
declaration tag at the end. There are four type declaration tags:

% Inte9er

$

For· e::-~amP 1 e:
I%

Si n9l e-pr•eci s:.ion
Double-precision
Strin9

FT% NUM% COUNTER%
are all inte9er variables, REGARDLESS of what attributes have been
assi9ned to the letters I, F, N and C •

T' RY' <Y.UAN I PERCENT'
ar·e al 1 s.in9le-pr-ecision var·iables, REGARDLESS of
have been assi9ned to the letters T, R, Q and P.

X# RR# PREV# LASTNUM#

what attr·ibutes.

are all double-precision variables, REGARDLESS of what attributes
have been assi9ned to the letters X, R, P and L.

CA$ WRD$ ENTRY$
are all string variables, REGARDLESS of what attributes have bean
assi9ned to the letters Q, C, Wand E.

Note that anv 9iven variable name can represent four
different variables. For example:

A5# A5 1 A5% A5$
are all valid and DISTINCT variable names.

One further implication of tvPe declaration: Anv variable name used
without a tag is equivalent to the same variable name used with one
of the four ta9s. For example, after the statement:

DEFSTR C
the variable referenced bv the name Cl is identical to the variable
referenced bv the name Cl$.

P.r·r·a··r Var·iables .

BASIC allows subscripted variables or arravs. An
references a list of values, or elements, instead

ar· r·a··c· name
i:,f a sir19le

MODEL II BASIC CHAPTER 2 PAGE 26

The arrav can have one or more dimensionsD Each dimension is
specified bv a subscriPtD Arrav subscripts ALWAYS start with zeroD
Therefore the statement:

Dil'1 I\(1:;:, HJ)
creates an array A with 143 elements arran9ed in 13 r·ows of 11
ci::11 umn'.::-~

A(S, 7)
r·efers to the element at row 5, column 7 in arrav A~

See the DIM statement descriPtion for more information~

•

•

•

•

•

•

MODEL II BASIC CHAPTER 2 PAGE 27

Data Conver-s i ,:tn

Often it is necessary to convert a value from one tvPe to another
tvPe. BASIC will perform maov conversions automatically; other
conversions require that vou use special conversion functions.

For examPle, suPPose vou want to add two numbers:
1 + 1.2345678901234567

The first number is an inte9er constant; the second, a
double-Precision constant. B•cause of different storase formats for
the two tvPes, the operation is PhvsicallY imPossible until one of
the numbers is converted to match the other,s tvPe.

According to rules described later, BASIC converts the 1 to double
Precision~ Then the two double-precision numbers can be added to
Produce a double-Precision resultN

What concerns us here is not the addition, or the rule for deciding
which number is converted~ Here we a~e onlv interested in the
conversion itself8

I11e9al Conversions

BASIC cannot automatica11v conve~t numeric values to strin9~ or vice
versa~ For example, the statements:

A$ = 123L,
A#:;:::: 11 1231+ 11

ar·e i 1 li:9a1 .. (Use STR$ and VAL to acci:1mPl ish such conver·s.i,~ns ...)

Le9al Conversions

BASIC can convert anY numeric tvPe into anv other numeric tvPe. Fo~
e::-~amP 1 e:

A#
A'
A!

-·
=
=

A%
A#
A%

Inte9er to double-precision
Double-precision to sin9le-Precision
Inte9er to single-Precision

MODEL II BASIC CHAPTER 2 PAGE 2!3

Rules for Conversion

Sin9le or double-precision to inte9er tvpe:

BASIC returns the 1ar9est inte9er that is not 9reater than the
or·i9inal valuE-~

Note: The ori9inal value must be 9reater than or e~ual to -32768,
and less than 32768.

E}::amPl es.:
A% = 3:~:767.9

AssiBns A% the value 32767.

A%= 2.5D3
AssiBns A% the value 2500.

A%= -123.45678901234567
AssiBns A% the value -124.

A%= -3276!3.1
Produces an Overflow Error (out of inte9er ran9e).

Inte9er to sin9le- or double-precision:

No error is introduced. The converted value looks like the ori9inal
value with 7 or 17 zeros to the ri9ht of the decimal Place.

A#= 32767
St,:,r·es- 32767. 0000000012)12)12)12) i r, A#.

A' = -1234
St,:,res -1234.000 in A!.

Double- to sin9le-Precision:

This involves convertin9 a number with UP to 17 si9nificant di9its
into a number with no more than 7v BASIC chops off (truncates) the
10 least si9nificant di9its, and Perfor·ms 4/5 rounding on the least
si9nificant di9it of the converted number.

That is, if the most si9nificant di9it <MSD) of the choPPed-off
portion is less than 5, then the least si9nificant di9it (LSD) of
the remaining Portion is left unchan9ed. But if the MSD of the
choPPed off Portion is 9reater than 4, BASIC adds 1 to the LSD of
the remaining Portion.

E~~::amP l e ~-:
A' • 1.234567!3901234567

St,:,res 1.23456!3 in A!

•

•

-Ni:,t-e: The ::-tatement:' •
PHINT A!

Will disPlav the value 1.23457, because onlv six di9its are

MODEL II BASIC CHAPTER 2 PAGE 29

disPlaved. The full seven di9its are stored in mamorv.

• A!= 1.33333333333333333

•

•

Stores 1.333333 in A!.

A ! = 1 0000095
Stores 1000010 in A!, thou9h onlv the first 6 di9its can be
disPlavad via the PRIN'f stat<2m<ent.

Sin91e- to double-precision:

To make this conversion, BASIC simPlv adds trailin9 zeros to the
sin91e-Precision number. If the ori9inal value has an exact binarv
representation in sin9le-Precision format, no error will be
introduced~ For example:

A#= 1.5
Stores J..5000000000000 in A#, s.ince 1.5 dc,es have an <?>,:act binar-Y
r-ePresentation.

However, for numbers which have no exact binarv representation, an
error is intro~uced when zeroes are added. For example:

A#= 1.3
Stores tl.299999952316284+ in A#.

Because most fractional numbers do not have an exact binary
rePresentation1 YOU should keep such conversions out of Your
P~o9rams. For example, whenever vou assi9n a constant value
double-Precision va~iable, vou can force the constant to be
double-precision:

A#• 1.3#
Both store 1.3 in A#.

or· A# = 1. 3D

to a

Here is a special technique for convertin9 sin91e-Pr•cision to
double-Precison, without introducing error into the double-P~ecision
value~ It is useful when the sin9le-Precision value is stored in a
variable.

Take th~ sin9le-Precision va~iabl~~ convert it to a strin9 with
BTR$, than convert th<? r;:,sul tar,t s.tr·in9 back into a numb<er· with VAL.
Th• t is., use

VALISTRS(sin9le-Precision var-iablell.

For examPle, comPare
10 A! = 1.3
20 A#= A!
30 PRINT A,jj,

the following Pro9ra~:
1 Sin9le-Precision
1 Sin91e->Di:,ul:tl~

Prints a value of:
1.299999952316284

ComPar-• with this Pro9ram•
40 A!= 1.3 'Sin9l<e-Pr-acision
50 A#• VAL(STRSCA!>> 'Special conversion technique
60 PRINT A#

which Prints a value of:
1.3

MODEL II BASIC CHAPTER 2

The conversion in line 50 causes the value in A! to be stored
accurat~lv in double-precision va~iable A#~

PAGE 30

•

•

•

•

•

•

MODEL II BASIC CHAPTER 2

IM2BASIC3 8/9/791

Operations

An operation instructs the Computer to do somethin9.

There are two levels of operations:
.Statements, which are complete instructions
.ExPressions, which serve as Parameters
and data for statements

Statements

PAGE 31

Statements tell the Computer to Perform some action. Statemer1ts are
comPlete in themselves. Once the statement has been written, no
other information needs to be added to the statement for it to be
executed.

For· example, the statement:
DEFINT N-R

Is complete as it stands .

A statement is made UP of a kevword* followed bv whatever Parameters
or data are needed. The data is usually represented bv an expression
(defined below).

* A kevword is anv se9uence of characters which has a Predefined
meanin9 for BASIC. 11 PRINT", "INPUT", and "SQR 1

' are all examples of
kevwords.

For example:
PRINT "MODEL II"

Tells BASIC to disPlav the messa9e inside 9uotes. PRINT is the
keyword; "MODEL II 11

, the data.

LIST 100-130
Tells BASIC to list the r-esident Pro9ram lines in the ran9e 100-130.
LIST is the kevword; 100-130, the parameter.

A1 = 5 •A/ 3
Tells BASIC to 9ive Ai the value ·of the expression on the ri9ht of
the equals si9n .

MODEL I I BASH C CH1\PTER 2 PAGE 32

!: Pr·~-: S .;. i O Ii-~-

The concept of an expression is important in this manual, since it
is used in most of the svntax descriPtions. Throu9hout these
descriPtions, you will encounter the terms "numer·ic exPress.ion 11

,

' 'string exPression 11
,

11 lo9ical exPression 11
, etc. Understandin9 the

concept wi 11 a11 ow ··tou to 9r·asP the ful ·1 Potential of BASIC' s
oPer·ation:: ..

ExPressions are composed of
• Con~£-t~:1.nt:: .
• Var·ia.ble~­
.. OP-,?rator·s
.Functions

A sirr1Ple exPr·ession consists of a sin9le terrr1: a constar1t, variable,
or function Preceded bv an optional + or - si9n or the lo9ical
oF·er·ator NOT.

Note: For simP1icitv, expression and term definitions do not
necessarily conform to standard comPuter usa9e.

F·or· e::-::amPle:
SG!R(3) NOT 0 1 Ai -33.565 1.2345-E:5 Z#

Here 7
S a Picture definin9 a TERM (items

e 1 '.=-ewher·e):
in s-:::iua.r·e bo:=<es.

FU 1,J<: .. Tl ON

A function consists of a lcevword usually followed by an ar9ument
list in Parentheses. Each of the ar9uments can be an expression. For
e>~amP 1 e:

SG!R(2. 5+A) TAJ\l(Y) CIJ\IT(X#) MID$(A$,3,N)

Here 7 s a Picture defining a FUNCTIONu

----t,

•

•

MODEL. II BASIC CHAPTER 2 PAGE 33

In 9eneral, an expression consists of one term or two or more terms
combined bv operators (defined belouJ)~ For example:

A+ 1 A/ B C • D + E + 3.5

Hare's a Picture defining a COMPLEX EXPRESSION:

~>[TfRMJ----1-------~

•

•

MODEL II BASIC CHr\PTEf~ 2 PAGE 31+

An oPer·ator is a sin91e svmbol or word which $i9nifies some action
to be taken on one or two specified values referred to as operands ..

5,;\2
The operator~ connects or relates its two operands, the numbers 5
and 2, and indicates exponentiation, 5 to the Power of 2 ..

0Per·ator·::::. fa11 into thr·et• cate9or·i-2s~
.. N,,m~ r i c
.Lc,9ica1
.. S1:r·in9

In the descriPtions below, we use the terms inte9er operation,
sin91@-Precision operation, and double-precision operation~ The
imPortance is that inte9er· operations involve two-byte oPerands;
sin91e-Precision, four--byte oper~nds; and double-Precision~
ei9ht-bYte operands~ The more bvtes ir1volved in an oPeration, the
slower the operation~

•

•

•

•

•

MODEL II BASIC CHAPTER 2 PAGE :;5

Numeric OPerato~s

There a.re nine different numeric operators. Two of them, si9n + and
si9n -, are unary, that is, thev have onlY one operand. A si9n
0P~rator has no effect on the precision of its oper·and~

For example, in the statement:
PRINT -·77, +Tl

the si9n operators - and+ Produce the values ne9ative 77 and
Positiv@ 77, r@sP@ctiv@lv,

Note: When no si9n operator appears in front of a numeric term, + is
assumed ..

Ths2
two ,:ipera.nd:: ...

+

*
/

These oPerators are
Addi i:it•n
81Jbi:raci:ion
M•Jl i:iPl ication
Division

binary~ that i :E-., th@Y all tak@

" MOD

Inte9er division (kevboard character <CTRL 9>
E>,Pori@ritiati.c.•n (keyboard character <SHIFT 6>
Modulus arithmeti~

Addition

The+ operator is the svmbol for addition. The addition is done with
the Precision of the more ~recise operand (the less precise operand
is COf;Ver·t,.?d).

For example, when one operand is inte9er type and the other is
sin91e Precision, the inte9er is converted to sin91e-Precision and
four-bvte addition is done~ Wh•n one oP•rand is sin91e-Precision and
the other is double-precision, the sin9le-p~ecision number is
converted to doubl•-Pr~cision Qnd ei9t1t-bvte addition is don~~

E:;.'~a.mPl e~.:
PRINT 2 + 3

Inte9er additionn

PRINT 3,1 + 3
Sin9le-Precision addition#

PR I NT 1. 2:5Lf56 7890123456 7 •r 1
Double-Precision addition~

Subtr-action

The - operator is th• svmbol for subtraction. As with addition, the
operation is done with the Precision of the mo~e Precise operand
(th~ less Pr•cise operand is converted).

MODEL II BASIC

Examples•
PRINT 33 - 11

Inte9er subtractionu

PRINT 35 - 11.1
Sin9le-Precision subtractionu

CHAPTER 2

PRINT 12.345678901234567 - 11
Double-Precision subtr·actionu

MultiPlication

PAGE 36

The* operator is the symbol for rnultiPlicationu Once a9ain, the
operation is done with the Precision of the more Precise operand
(the less Precise operand is converted)u

Examples:
PRINT 33 * II

Inte9er m,JltiPlicationu

PRINT 33.1 * 11
Sin9le-Precision multiPlicationa

PRINT 1.2345678901234567 * 11
Double--precision multiPlicationa

Division

The/ svmbol is used to ir1dicate ordinary division. Both operands
are converted to single or double-Precision, dePendin9 on their
ori9ir1al Precision~

If either operand is double-precision, tt1en both are
converted to double-Precision and ei9ht-bvte division
is Performed~
If neither· oper·and is double-pr-ecision~ then bott, are
converted to sin9le-Precision and four-bvte division is
Perfor·med~

Examples•
PRINT 3/4

Sin9le-precision divisionu

PRINT 3.8/4
Sirl9le-Precision divisionu

PRINT 3 / 1.2345678901234567
Double-precision division.

Inte9er Division

The integer division OPer·ator, converts its operands into inte9er·
tvPe, then Performs inte9er division, in which the remainder after

•

•

•

•

•

•

MODEL.. II BASIC CHAPTER ::;-: PAGE Tl

division is ignored, leavin9 an inte9er result. (If either operand
is outside the ran9e <-32768,32767>, an error· will occur.)

For· e::-::amPle:
PRINT 7 '\ 3

Prints the value 2, since 7 divided bv 3 equals 2 remainder 1.

E::-::Ponen ti a 1: ion

The s··{mbol A (r·ead: carat) d~2notes e::--.:Ponentia.tion. It ccinver-t'.:­
both its operands to sin91e-precision, and returns a sin9le
precision result.

Note: To enter the A operator, Press(SHIFT-6~

F,:ir- e>~a.mPle::
PRINT 6" .3

Prints 6 to the =3 Power.

Modulus Arithmetic

The MOD (11 modulo") operator allows YOU to do modulus arithmetic,
i.e., arithmetic in which everv number is converted to its
equivalent in a cvclical counting scheme. For example, a 24-hour
clock indicates the hour in modulo 24: althou9h the hour keeps
incrementin9, it is alwavs expressed as a r1umber from 0 to 23.

MOD requires two operands, for example:
A MOD B

Bis the modulus (the countin9 base) and A is the number to be
conver·ted #

IExPressed in mathematical terms, A MOD B returns the REMAINDER
after whole-number division of A by B. In this sense, it is the
converse of\, which returns the WHOLE NUMBER QUOTIENT and i9nores
th~~ r·emainder·.)

MOD converts both operands to inte9er tvPe before Performin9 the
oPerationa If either operand is outside the ran9e <-32768,32767) an
E:r·r·or· wi 11 occur· ..

E::-~amP l f= ~.:

PRINT 15:', MOD 1:i
Prints 5, since 155/15 9ives a whole number quotient of 10 with
r·emainder· Sa

PRINT 79 MOD 12
Prints 7, since 78/12 e9uals 6 with remainder 7 .

lfll INPUT "TYPE IN AN 1;NGLE IN DEGREES"; A%
20 PRINT A%"=" A%' 90" * 90 +" A% MOD 90

InPut a positive an9le 9reater than 90. Line 20 expresses the an9le

MODEL II BASIC CHAPTER 2 PAGE 38

as a multiPle of 90 de9rees Plus a remainder. •

•

•

•

•

•

MODEL II BASIC CHAPTEFl 2 PAGE 39

The table below summarizes the Precision of operations for all
numeric oPer·ators. (I= inte9er, S = sin9le-pr·ecision, D =
double-precision.)

Important: For effects of conversions on accuracy~ see 11 Data
Convf::r·sion" u

0Per·a tor- OP<:r·ar,d (e.)
================------=====================~~~===~~==

I

A

MOD

+ (si9n)
and

-- (si9n)

II
IS SS

ID SD DD

I I IS SS
ID SD DD

All -Possible combinations

All Possible combinations

Al 1 PO:f.s:i.b·1~~ ci::imbinai:i,:iri:::.

I
s
D

I
s
D

C:· _,
D

I

I

I
R

D

MODEL II BAf3IC CHAPTER '.2 PAGE 40

Lo9ical •Perators

Lo9ical operators deal with True/False conditions, comparisons, and
tests .. Thev allow vou to build elaborate decision-making structures
into Pro9rams, to Perform bit maniPulations, to sort data, etc.

All lo9ical operators convert their operands to two-bvte inte9ersu
If an operand is outside of the ran9e <-32768,32767> an error will
occur- ..

The lo9ical operators ir1clude the three relatior1al operators:

and six Boolean word-operators:
AND OR XOR NOT IMP

Note= An expression invo1vin9 a lo9ical operator is called a lo9ical
e>~Pr·f:1sic1n.,

Relational Operators

Relational operators comPar·e two operands for numerical Precedence.
Here is a table of the relational operators and their various
combinations:

,:ir·
=<or<=
=> or>=

Le.'.=,s than
Gr·ea te r· than
E·=iual to
Not e·=iua.1 to
Less than or equal to
Greater than or e9ua1 to

Relational operators can return or1lY two Possible values~ Tr·ue or
False. ActuallY, BASIC returns the number -1 to indicate True, and 0
to indicate False. But the quantity C-1 or 0) is rarelY used as a
number~ More oft~:;:,,n, it is 1.J.'.=.-ed •::1.s a decisii::1n-m~.1kin9 OPfjr·ator·, a.s ir1
the linE<:

IF A= B THEN GOTO 1000 ELSE END
The lo9ical expression A= B returns ne9ative one (-1) when A equals
B, and zero when A does not equal B. But You don 7 t care about the
numbers -1 and 0. What matters to YOU is that if the expression is
1·rue, GOTO 1000 is executed; otherwise BASIC ENDs the Pro9ram"

Here's an example 1uhere the result of a logical exPression IS used
as a -=iua.ntit·•.--:

MAX - -CA< Bl* B
For any two inte9er tYPe values
the twQ.

CB <= A) * A
A and B, MAX contains the lar9er (if

Note~ All relational operators can also be used to compare strin9s
for Precedence. The result of such a comparison is still either a
True (lQ9ical -1) or- False Clo9ical 0). See Strin9 0Perators.

•

•

•

•

•

•

MODEL II BASIC CHAPTER 2 PAGE 41

Boolean Operators

In this section, we will exPlain how Boolean operators are
implemented in Model II BASICu •iowever, we will not trv to explain
Boolean al9ebr·a, decimal-to-binar·Y conversions, binar·v arithmetic,
and similar subJects. If you need to learn somethin9 about these
toPics, Radio Shack's Understandin9 Di9ital Electronics <Catalog
Number 62-20101 and TRS-80 Assemblv-Lan9ua9e Pro9rammin9 (Catalog
Number 62-2006) are the books to start withu

Model II BABIC includes
AND
EQV

six Boolean
OR
IMP

operators:
XOR
NOT

All the Boolean oPerators relate two operands except for NOT, which
acts on a sin9le OPerandu

These operators can be used to set UP decision structuresu For this
aPPlication, both operands are usuallv relational expressions and
the operator is one of the following:
AND, OR, XOR, NOT.

AND
If both expressions are True, then AND returns a lo9ical True.
Otherwise it returns a lo9ical False .

c,R
If either of the expressions is True, or both are True, this operand
returns a lo9ical True~ Otherwise it returns a lo9ical False.

XOR (11 Exclusive-OR")
Onlv ~,hen one of the exPr·essions is True does OR return a lo9ical
Truen Otherwise it returns a lo9ical False.

NOT
NOT is a unarv operator (acts on one operand). When the expression
is True, NOT returns a logical False. When it is False, NOT returns
a lo9ical True.

Example
IIF A<= 90 AND A~= 01 THEN PRINT "Value is okav.•

OnlY if A is in the ran9e <0,90) will BASIC Print the "okav"
messa9e~

MODEL. I I E?,AE< IC CHAPTER 2 PAGE ,,.2

Bit ManiPulation

For this aPPlication, both operands are usuallv numeric exPr·essions.
BASIC does a bit-bv--bit comparison of the two operands, according to
Predefined rules for the specific operator.

Note: The operands are converted to inte9er tvPe, stored internallv
as 16-bit, two,s con1Plerr1ent numbersu To understand the results of
bit--bv-bit comparisons, vou need to keeP this in mind~

The following table summarizes the action of Boolean operators in
bit manipulation~

0Pe r·,a. tor·

BOOLEAN OPERATIONS

Me,::1.nin~.~ of
OPer·a ti on

Fir·s.t
0Per-and

Sec,:ind

======================--------------~=======~-----------------
AND

OH

XOR
(-e::<cl u-N
s.i ve
,:i r·)

EQV
(-L::r·:::iu iv-
alence)

IMP
(i ITIP l i ·-
ca.ti on)

NOT

Wh<'!n both bits
~3. r- r.,~ l ' th{? r·f:: :::.u 1 1:
u.!i l l be 1. Other·""·
IJ..li:::.-f:!, the r·esul 1:
w i 1 l be 0.

FU?sul 1: wi l l be 1
un 1-e:..5 both bit:..
ar·e 0.

Re:..ul t w i 1 1 be 1
unless both bits
a.r·e th., sa.me ..

R<'fs.u l t H.ii 1 l be 1
ur1 l e'.::.s both bits.
<::1.r·e difft?Pent ..

R<'fs.ult LO i] l be 1
unles:::. fir·s.t bit
i :.. l and second
bit is. 0.

Hr:!s.i..11 t is op­
Posit,.,,'=! i:,f bit ..

l
:l
0
0

1
1.
0
0

1
1
0
0

1
1
IZi
IZ!

1
1
0
IZi

1
0

1
,1
l
0

1
0
1
(1

1
0
l
0

1
IZi
1
IZi

l
0
1
0

1
IZI
0
0

1
1
1
IZI

IZi
1
1
0

1
IZI
0
1

1
0
1
1

IZi
1

•

•

•

•

•

•

MODEL II BASIC CHAPTER 2 PAGE 43

As an examPle of bit manipulation, suppose vou want to chan9e
lowercase cha~acter~ to UPPercase and UPPercase characters to
lowercase. You could do this by chackin9 the ASCII code of each
character and addins or subtractin9 decimal 32 (hexadecimal 201
dePendin9 on whether the cha~acter was UPPercase or lower~ But this
routine could be done more simPlv, usin9 onlv the operator XOR.

The ASCII codas for UPParcasa characters are decimal 65-90
lhaxadacimal 41-5A); for lowercase, decimal 97-122 (hexadecimal
61-7A). Lookin9 at these ran9es in binarY, vou can see that all
caPital lettar·s. have a 0 in bit pc,s.ition s, while all low.;r•ca.s.e
letters have a 1 in bit Position 5~

Note: Position 7 is the most si9nificant bit; Position 0 is least
si9nificant, as illustrated below:

most si9nificant
bit

least si9nificant
bit

7 • 6 , 5 : 4 : 3 , 2 : 1 : 0 :

So, to convert from lowe~ to UPPercase and vice versa, YOU Just
to99la Cravarse the state ofl bit 5. Decimal 32 has the followin9
binary representation:

001011l011ll1l
Notice that bit 5 is a 1; all others are zeroes. When YOU XOR
decimal 32 with anv number, YDU will affectively tossle bit 5. For
letters, this will switch cases, UPPer to lower and vice ve~saR

For instanc•::t, since 72 is the ASCII code for "H 11
:

PRINT CHR$(72 XOR 32)
Prints a lowercase Hh 11

~

You can check this bv consultin9 XOR in the table above and XOR-in9
the two numbers by handa

MODEL I I E!,AS IC CHAPTER 2 PAGE 44

There a~e seven strin9 operators in Model II BASIC. These operators
allow YOU to compare strin9s and to concatenate them (i~e#, string
them to9ether").

The comparison operators for strin9s are the same as those fo~
numbers, althou9h their meanin9s ~re sli9ht1Y different~ Instead of
comPar·in9 nume~ical ma9nitudes, the operators compare sorting
Precedence (i.e., alphabetical se9uence>~

<
>

<>

Pr·ecedE•::.
Fol 1 ow::.
Has the same Precedence
Does not have the same Precedence
Precedes or has the same Precedence
Follow$ or has the same Precedenc•

Comparison is made character by character on the basis of ASCII
codes. When a non-matching character is found, the strin9 containin9
the character with a lower ASCII code is taken as the smaller
(

11 Precedent»> of the two st~in9s. See the APPendix for an ASCII code
table.

E::.;:amP l es :
UAtl < UBI!

The ASCII code for A is decimal 65; for Bit's 66.

11 COOL 11 > 11 CODE 11

ASCII for O is 791 for D it's 68.

If, while comparison is Proceeding, the end of one string is reached
before anv nor1-matchin9 characters are found, the SHORTER string is
considered to be the smaller. For example:

"TRAIL"< "TRAILER"

Leading and trailin9 blanks are si9nificant. For example:
u All (UA tl

ASCII for" 11 (space) is 32; for A it,s 65.

11 2-80 11 ·< 11 Z-80Aw
The strin9 on the left is four char·acters long; the strin9 on the
r"i9ht is five.

Here a~e some examPles of how You mi9ht use the str·in9 comPa~ison
operators in a Pro9ram:

IF Aili <> E>.~; THEN END
If string A$ is not the same as BS, the Pro9ram ends.

IF A< 8 THEN PRINT A$
If A$ alPhabeticallv •Precedes• 8$, AS is Printed.

•

•

•

•

•

•

MODEL II BASIC CHAPTER 2 PAGE 45

IF NMES • "CARRUTHERS" OR CITY$• "BUFFALO"
THEN PRINT NMES, CITYS

If the value of NMES is CARRUTHERS, then CARRUTHERS Plus the current
value of CITY$ will be Printed, OR if the value of CITY$ is BUFFALO,
then BUFFALO will be Printed Plus the current value of NMES.

The concatenation operator is represented bv the svmbol +. This
operator takes two strin9s as its operands and returns a sin91e
strin9 as its result bv adding the strin9 on the ri9ht of the+ si9n
to the string on the lefta If the new strin9 is 9reater than 255
characters, a Strin9 Too Lon9 error will occur.

For example:
PRINT "CATS II+ "LOVE II+ "MICE 11

which returns
CATS LOVE MICE

MODEL II BASIC CHAPTER 2 PAGE Lf6

Evaluation of ExPressions

When an exPres$iOn involves multiple oPe~ations, BASIC Performs the
operations according to a well-defined hiera~chv, so that results
are always Predictable.

When a complex expression includes P&~enthe$es, BASIC always
evaluates the expression inside th~ Parentheses before evaluating
the rest of the expr·ession. For example, the expression:

8·-13-2)
is evaluated like this:

3,,2,"1
8-·1="7

With nested Par·entheses, BASIC starts evaluation at the innermost
level and works outward~ For example:

4 • I 2 - (3 - 41
is evaluated like this:

3-·4 = -1
2 - ,,_l = ;3

if * 3 ~, 12

•

Or·der· of 0Per·a.ti.:1ns •

When evaluating a sequence of oPe~ations on the same level of
Parenthesis, BASIC uses the followin9 hierarchy to determine what
oPeration to do first. Operators are shown below in decreasin9 ordef'
of Precedence« 0Perators listed in the same entrv in the table have
the same Precedence and are executed in order FROM LEFT TO RIGHT.

E><Ponentia.tion
+,-·- Una.r··y• :..i9n OF•~•r-.a.nd;. (NOT ..additiona.nd s.ubtraci:icin)

*' I

' MOD
+' ~-

lnte9&r divisior,

Addition and subt~action
<' >' :::::: ' <::::::, >=' < >
NOT
AND
OR
XOH
E<:N
IMP

For example, in the line
X * X + 5 A 2.8

BASIC will find tha value of 5 to the 2.8 Power. Next it will
multiPlY X * X, and finally •dd this value to the value of 5 to the
2.8. If vou want BASIC to Perform the indicated operations in a
diff~rent order, vou must add Parentheses, e~9~

X * (X + 5 A 2. 8) •

•

•

•

MODEL II BASIC CHAPTER 2 PAGE 47

or·
X •IX+ 5) A 2.8

Hare's another axamPla:
IF X = 0 ORY> 0 AND Z = 1 THEN GOTO 255

The relational operators= and> have the hi9hest Precedence, so
they will be Performed first. Since they both have the same
Precedence, thaY will be Performed one after another, left to ri9ht.
Then th<i- Bi::,i::11,ear, OPi:r•ation:-E• wi 11 be r-~r-f,:ir·med .. AND ha.:=. a hi9hiH•
Precedence than OR, so the AND operation will be Performed before
tha OR, Therefore, the line above means that if X • 0, or if Y > 0
and Z = 1, control switches to line 255~

If the line above look$ confusin9 because vou can't ~•membeP which
operator is Precedent ove~ which, then vou can use Parentheses to
make the sequence obvious:

IF X • 0 OR ICY> 0) AND IZ = 11) THEN GOTO 255

MODEL II BASIC CHAPTER 2 PAGE 48

TYPe Conversions

Durin9 evaluation of an expression, BASIC often has to Perform type
conversions. Unless YOU 7 re careful in formin9 exPressions, these
conversions can Produce invalid results. For examPle, in the
exPression:

A#* C'
C! must be converted to double-Precision before the multiPlication
can take Place. This ltlill ,1suallY introduce an error into the
result.

Before evaluatin9 the exPr·ession~
A+ BAl.2345678

BASIC must conver·t 1.2345678 to to sin9le-precision. You can~ot
expect double-precision from a sin9le-Precision operator or
function.

See "Data Conversion" for details on the effects of tvPe conversion
on accuracv, and for special conversion techni9ues.

Functions

A function is a built-in subr·outine. The functions SUPPlied in
Model II BASIC save You from having to write equivalent BASIC
routines, and they oPerate faster than a BASIC routine would.

A function consists of a kevword followed bv required inPut values,
r·eferred to as ar9uments or· Parameters. The ar9uments are alwavs
enclosed in Parentheses and separated by commas. Some functions have
no ar9uments; others re9uire UP to three. The quantity output or
returned by a function is called the value of the function.

Examples:
S0RIAl

1·ells BASIC to compute the square root of the 9uantitv A. SQR is the
kevword, and A is the ar9ument.

MID$(A$, 3, 21
Tells BASIC to return a substrin9 of the strin9 A$, starting with
the third character, with 1en9th 2. MID$ is the keyword, and A$, 3
and 2 are its ar9uments or Parameters.

Since functions are sYntacticallY equivalent to expressions, they
cannot stand alone in a BASIC Pro9ram. Thev must be used in
statements.

For example:
A= S0R (8)

Assi9ns A the value of square root of 8.

•

•

•

•

•

•

MODEL II BASIC CHAPTER 2 PAGE 49

PRINT MIDSIAS, 3, 21
Prints the substrin9 of A$ startin9 at the third character and two
characters lon9.

PRINT LOGISQRl21l
Prints the natural lo9arithm of the s9uare root of 2.

In this manual, functions are classified as numeric when thev return
a number, and strin9 when they return a strin9.
Wherever the svntax calls for a numeric exPr·ession, vou can use a
numeric function; for a strin9 expression, vou can use a strin9
function.

There is another special class of functions which return information
about the allocation of memory and the location of various
9uantities i~ memorv. For example:

~M
Returns the number of bvtes of memorv available for storin9 Pro9ram
text, numeric and arrav variables •

•

Chapter 3

BASIC Keywords

•

•

PAGE NUMBERING PESUMES ON THE NEXT

PAGE ~JITH NUt1BER 57.

There are no raqes numbered 50 ,51,52,53,54,55,56.

-

-

-

- A. Statements

-
57

e Command Statements

-

-

Command statements tell BASIC to enter another. operation mode or to
perform various System functions (like loading a program from disk).
Although they can be included inside a program, their primary use is outside
of a program.

For example, the command statement

I\IF\;...i

Erases the entire program currently in memory and zeroes all variables.

59

AUTO
Number Lines Automatically

AUTO startline, increment
startline is a line number specifying the first line number to be used. If

startline is omitted, 10 is used. A period (".") can be substituted for
startline. In this case, the current line number is used.

increment is a number specifying the increment to be used between lines. If
increment is omitted, 10 is used.

AUTO turns on an automatic line numbering function. After you enter this
command, BASIC will supply the startline. All you have to do is type in the
text of the line and press@ai3il. Then AUTO will display the next line
number, using increment or a default increment of 10.

To turnoff the AUTO function, press l:t;l::t\1:J at any time. The current line
will be cancelled.

Whenever AUTO provides a line number that is already in use, it will display
an asterisk immediately after the line number. Press(:i;j#tj:J if you do not
want to change that line.

Examples

AUTO

starts automatic numbering with line 10, using increments of 10 between line
numbers.

AUTO 100

starts numbering with 100, using increments of 10 between line numbers.

AUTO 1000, 100

starts numbering with 1000, using increments of 100 between line numbers.

Au·ro , s
starts numbering with 0, using increments of 5 between line numbers.

AUTO.

starts numbering with the current line number, using increments of 10
between line numbers.

60

-

-

-

- DELETE
Erase Program Lines from Memory

DELETE startline-endline
startline is a line number specifying the lower limit for the deletion. If startline

is omitted, then the first line in the program is used as startline.
endline is a line number specifying the last line in your program that you

want to delete. Endline must reference an existing program line.

A period (".") can be substituted for either startline or endline. The period
signifies the current line number.

DELETE re moves from memory the specified range of program lines.

Examples
DELETE 70

Erases line 70 from memory. If there is no line 70, an error will occur.

DELETE 50- 1 10

Erases lines 50 through 110 inclusive.

DELETE - 40

Erases all program lines up to and including line 40.

DELETE-.

Erases all program lines up to and including the line that has just been entered
or edited.

DELETE.

Erases the program line that has just been entered or edited.

6 1

EDIT
Edit Program Line

EDIT line number

ED IT allows the specified line to he revised without affecting any other lines.
The ED IT command has a powerful set of subcommands which are discussed
in detail in the section on Program Editing and Debugging.

EDIT 100

Edits line 100

EDIT.

Edits the current line.

62

-

-

•

- KILL
Delete File from Disk

KILL filespec

KILL deletes the speci~ed file from the diskette directory.

If no drive specification is included in the filespec, BASIC will search for the
first drive that contains the filespec, and attempt to delete that file .

Do not KILL an open file. CLOSE it first.

Example
- •<ILL "FILE/BAS"

deletes this file from the first drive which contains it.

KILL "DATA:2"

deletes this file from drive #2.

- 63

LIST
Display Program Lines

LIST startline-endline
start/ine is a line number specifying the lower limit for the listing. If startline is

omitted, then the first line in the program is used.
end line is a line number specifying the upper limit for the listing. If end line is

omitted, the last line in the program is used.

A period(".") can be substituted for either startline or endline. The period
signifies the current line number.

LIST instructs the Computer to display the specified range of program lines
currently in memory. The arguments are optional.

Examples

LIST

Displays the entire program. To stop the automatic scrolling, press HOLD.
This will freeze the display. Press any key to continue the listing.

LIST 50

Displays line 50.

LIST 50-85

Displays lines in the range 50-85.

LIST 227-

Displays line 227 and a ll higher-numher lines.

LIST.-

Displays the program line that has just heen entered or edited. and all
higher-numbered lines.

LIST-227

Displays all lines up to and including 227.

LIST-.

Displays all lines up to and including the line that has just been entered or
edited.

LIST.

Displays the line that has just heen entered or edited.

64

-

-

-

-

-

LLIST
Print Program Lines

LUST startline-endline
start line is a line number specifying the lower limit for the listing. If startline is

omitted, then the first line in the program is used as startline.
end line is a line number specifying the upper limit for the listing. If end line is

omitted, the last line in the program is used as endline.
A period (". ") can be substituted for either startline or end line. The period
signifies the current line number.

LUST works like LIST, but its output is to the Printer rather than the
Display. LUST instructs the Computer to print the specified range of
program lines currently in memory. The arguments are optional.

Examples

LLIST

Lists the entire program to the printer. To stop this process, press HOLD.
This will cause a temporary halt in the Computer's output to the Printer. Press
any key to continue printing.

LLIST 780

Prints line 780.

LLIST 68-90

Prints lines in the range 68-90.

LLIST SO-

Prints lines 50 and all higher-numbered lines.

LLIST.-

Prints the program line that has just heen entered or edited plus all higher­
numbered lines.

LLIST-50

Prints all lines up to and including 50.

LLIST-.

Prints all lines up to and including the line that has just heen entered or
edited.

LLIST.

Prints the line that has just been entered or edited.

65

LOAD
Load Basic Program File

LOAD "filespec" [.R]
R (optional) tells BASIC to RUN the program after it is loaded.

This command loads a BASIC program file into RAM. If the R option is
used, BASIC will proceed to RUN the program automatically. Otherwise,
BASIC will return to the command mode.

LOAD wipes out any resident BASIC program, clears all variables, and
closes all open files unless the R option is used, in which case open files will
not be closed.

LOAD with the R option is equivalent to the command RUN filespec, R.
Either of these commands can be used inside programs to allow program
chaining (one program calling another).

If you attempt to LOAD a non-BASIC file , a Direct Statement in File or
Load Format error will occur.

Example
LOAD "PROG1/BAS:2"

This loads PROG 1/BAS from drive 2 BASIC then returns to the command
mode.

LOAD "PROG1/BAS"

Since no drive specification is included in this command, BASIC will begin
searching for this program file in drive O and load the first one it finds with the
name PROG 1/BAS.

66

-

-

-

-

-

MERGE
Merge Disk Program with Resident Program

MERGE filespecltxt
filespecltxt is a BASIC file in ASCII format, e.g., a program saved with the A

option.

The MERGE statement takes a BASIC program from disk and merges it with
the resident BASIC program in RAM.

Program lines in the disk program are inserted into the resident program in
sequential order. For example, if three of the lines from the disk program are
numbered 75, 85, and 90, and three of the lines from the resident program are
numbered 70, 80, and 100, when MERGE is used on the two programs, this
portion of the new program will be numbered, 70, 75, 80, 85, 90, 100.

If line numbers in the disk program coincide with line numbers in the resident
program, the resident lines will be replaced by those from the disk program.
For example, if three of the lines from the disk program are numbered 5, 10,
and 20, and three of the lines from the resident program are numbered 10, 20,
and 30, when MERGE is used on the two programs, this portion of the new
program will be numbered 5, 10, 20, 30. Lines 10 and 20 of the new program
will be identical to lines 10 and 20 on the disk program.

MERGE closes all files and clears all variables. Upon completion, BASIC
returns to the command mode.

Example
Let's say we have a BASIC program on disk, PROG2/TXT, which we want to
merge with the program we've been working on in RAM. Then

MERGE "PROG2/TXT"

will do the job.

67

Sample Uses
MERGE provides a convenient means of putting modular programs together.
For example. an often-used set of BASIC subroutines can be tacked onto a
variety of programs with this command.

Suppose the following program is in RAM:

BIZ\ REM
90 GOSUB
10121 REM
110 HEM
120 REM
130 EJ~D

MAIN PROGRAM
11ZH7.10

PROGRAM LINE
PROGRAM L. I NE
PROGRAM LINE

And suppose the following suhrouti ne, SUB/TXT, is stored on disk in ASCII
format:

1121012) REM
1010 HEM
1020 REM
1030 F~EM
1040 RETURN

BEGINNING OF SUBROUTINE
SUBF<OUT I NE LI NE
SUBROUTINE LINE
SUBROUTINE LINE

We can MERGE the subroutine with the main program using the statement

MERGE "SUB/TXT"
and the new program in RAM would be:

MAIN F'F:OC-:iRAM F:0 m::M
'-?0 GOSUB
l flHZl f<D1
110 r~F M

1.m10

i 2c1J r<r::r1
1"30 END
t ~1.le)(ZI Ht: 1"1
i G1 l (Z1 i-~ EM
1 17.l :.-:-: c1.1 m::: r•1

PROGRt\ M LINE
Pl~06H.t\M l_ J NE
PHOCiFMM L.JNE.

BEGINNING OF SUBROUTINE
bUBr-~OUTINF: l..INE
b l}E:;FWUT I NE l... I NE:

1030 REM SUBROUTINE LINE
l Q'.ti.tlZI F<FT URI\J

68

-

-

-

-

-

-

NEW
Erase Program from Memory

NEW

NEW erases all program lines, sets numeric variables to zero and string
variables to null.

Example
NEW

69

RENUM
Renumber Program

RENUM newline, startline, increment
newline specifies the new line number of the first line to be renumbered. If

newline is omitted, the line number 1 O is used.
startline specifies the line number in the original program where you want to

start renumbering. If startline is omitted, the entire program will be
renumbered.

increment specifies the increment to be used between_ each successive
renumbered line. If increment is omitted, 1 O is used.

REN UM changes aH ine numbers in the specified range, as well as all line
number references appearing after GOTO, GOSUB, THEN, ON . ..
GOTO, ON .. . GOSUB , ON ERROR GOTO, and ERL frelational
operator] - throughout the program.

All the REN UM arguments are optional.

REN UM will add trailing blanks to line number references which contain
fewer than 5 digits. These blanks will not accumulate during subsequent
renumbering operations on the same program.

Examples
RENUM

Renumbers the entire resident program, incrementing hy lO's . The new
number of the first line will he 10.

RENUM 6000,5000,100

Renumbers all lines numhered from 5000 up . The first renumhered line will
become 6000, and an increment of 100 will be used between suhsequent lines.

RENUM 10000,1000

Renumbers line 1000 and all higher-numbered lines. The first renumbered
line will become line 10000. An increment of 10 will be used between
subsequent line numbers.

RENUM 100,,100

Renumbers the entire program, starting with a new line number of 100, and
incrementing hy IOO's. Notice that the commas must he retained even though
the middle argument is gone.

RENUM,, 5

Renumbers the entire program, starting with a new line number of 10, and
incrementing hy S's.

70

-

-

-

-

-

-

Error Conditions

l . RENUM cannot be used to change the order of Pro9ram
line:: .• F,:,r· ,?:,-::a1T1Pl<?, if th,t! or•iqir1al f"·r· o 13r·a.m h:;;1.::. linf~s.
numbered 10, 20 and 30, then th e command

f~ENUM :l ~:i , :.3t~1
is ill e9al, since the r esul t would b e to move the third
l ine of the Pro9ram ahead of the second . In this case, an
F C (i ·1 ·1 e g a l f u r1 ,: t i o n c a. l l) ,2 r· r· ,:, r· 1JJ i l l r· e :;. u ·1 t , a. r1 d t he
or•iginal Pr·i::,~Jr•;,11r1 tili 1 ·1 bl'! l\?ft 1Jncha.n9,':!d.

,. RENUM will not create new line numbers 9reater than
65529 . Instead, an FC error will result , and the
o r· i ~1 i r1 a l FT ,:, 9 r· a. m w i l l b ~~ 1 e f t 1J n c h -ct. n g e d .

3. If an undefined line number is used inside vour ori9 inal
pro9ram, RENUM will Print a warning messa9e, UNDEFINED
LINE xxx x in YYYY, where x x xx is the ori9i nal line number
reference and vvvv is th e ori9inal numb e r of the line
cont .::i. in in q :,-,::,-:: ::-,::,-:: .

Not e that RENUM will renumber the Pro9ram in sPite of
this warnin9 messa9e . It will replace the number xxxx
with S blanks, a nd will renumber vvvv, accordin9 to the
Parameters in vour RENUM co mmand.

For example, if vou r original Pro9ram includes the line
11 l1 GOTO 1,~00

t,ut doE•s. NOT ir,cl ude a l ir1e 1QlC'l0, ther1 RE::.NUM 1JJi 1 ·1 Pr·int a
t.uar· n i n9,

UNDEFINED 1000 in 110
a nd renumber the Pro9ram. The text of ori9inal line 110
l1.1i i l bt· o::han 9e d ti:,

GOTO <five blanks here>

71

RUN
Execute Program

RUN startline
startline is a line number specifying where you want program execution to

start. If startline is omitted, the first line in the program is used. A period
(". ") can be used in place of startline. The execution will start at the
current line number.

RUN fi/espec, R
filespec is the filespec for a BASIC program stored on disk. If, A is added,

BASIC leaves open files open. Otherwise, all files are closed.

RUN followed by a line-number, period, or nothing at all simply executes the
program in memory.

RUN followed by a files pee loads a program from disk and then runs it. Any
resident BASIC program will be replaced by the new program.

RUN atuomatieally CLEARS all variables.

Examples
RUN

Execution starts at lowest line number.

RUN 100

Execution starts at line HX}.

RUN "DISKDUMP/BAS"

When you type the above line and press ENTER, the BASIC sector-dump
program will be loaded and executed.

72

-

-

-

•

•

•

Sample Uses

Suppose you have two programs in memory. One of them begins at line 100
and ends at line 180; the other begins at 200 and ends at 350. Furthennore, the
first program has been appropriately terminated (i.e., 180 END). You want
to run the second program, stop, observe its output, and then run the first.
Type:

RUN 200

and the second program will execute. When you want to begin execution of
the first program, simply type:

RUN

Sample Program
Suppose you save the following program on disk with the name "PROGl/
BAS":

200 PRINT "PROG1 EXECUTING ••• "
210 RUN "PROG2/BAS"

And save this program on disk with the name ''PROG2/BAS":

220 PRINT "PROG2 EXECUTINE ••• "
230 RUN "PROG1/BAS"

Now type:

RUN "PROG1/BAS

rn:oad
and you '11 see a simple example of program chaining. Hold down the BREAK
key to interrupt the program chain .

73

SAVE
Save Program

SAVE filespec, A
A causes the file to be stored in ASCII rather than compressed format.

The SA VE command lets you save your BASIC programs on disk. lf the
filespec you use as the argument of SA VE already exists, its contents will be
lost as the file is re-created.

You can save a program in compressed or ASCII format. Using compressed
format takes up less disk space and is faster during SA VEs and LOA Ds.
BASIC programs are stored in RAM using compressed format.

Using the ASCII option makes it possible to do certain things that can't be
done with compressed-format HASIC files. Some examples:

• A disk file must be in ASCII form hefore the MERGE command can be
used.

• A disk file must be in ASCII form hefore TRSDOS commands LIST and
PRINT can be used.

• Programs which read in other programs as data typically require that the
data programs be stored in ASCII.

For compressed-format programs, a useful convention is to use the extention
i BAS. For ASCII-format programs. use /TXT.

Example
SAVE "FI LE1/BAS.JOHN0DOE: 3 "

saves the resident BASIC program in compressed format. The file name is
FILEl: the extension is /BAS; the password is JOHNQDOE. The file is
placed on drive 3.

SAVE "MATHPAK/TXT", A

saves the resident program in ASCII form, using the name MATHPAKi
TXT, on the first non-write-protected drive.

74

-

•

-

-

-

SYSTEM
Return to TRSDOS

SYSTEM "command"
command is a string expression specifying a TRSDOS command.

·· ·n• 11 ~r:l MllS"I" NC>T ,:. p,,,,- 1· r· ·.,.- an··,·· of th-2 TRSDO!:; "h i Sth memc•r··.,.- comma.rid:::." t_ 1 .. , I ~r.:1 11 _ -· _ .

listed in the TRSDOS Re ference Manual, LibrarY Comm~nds section.
Furthermore, to call DEBUG from BASIC, v ou MUST turn DEBGUG or,
before starting BAS I C.

SYSTEM is used to return to TRSDOS, the disk operating system. The
argument command causes the System to execute the specified TRSDOS
command and immediately return hack to BASIC. Your program and
variables will be unaffected.

If command is omitted, SYSTEM returns you to the TRSDOS READY
mode.

Examples

SYSTEM

Returns you to TRSDOS. Your resident BASIC programs will be lost.

SYSTEM "DIR"

Causes the TRSDOS command, "DIR" (print Directory) to he run, and then
returns to BASIC. Your resident BASIC program will remain intact.

Sample Program
350 PRINT "THIS IS A PROGRAM FILE"
360 PRINT "BEFORE SAVING IT, I WANT TO SEE WHAT

FILENAMES HAVE BEEN USED"
370 FOR N=1 TO 1000: NEXT
380 SYSTEM "DIR"
390 PRINT "NOW I CAN CHOOSE A FILENAME WHICH HASN'T

BEEN USED"
400 END

Line 380 causes the system to execute the TRSDOS command DIR which
displays a file directory. After displaying the directory, the System
immediately returns to BASIC and runs the next line in the program. Line
370 simply sets a two-second pause hefore displaying the directory.

75

41 Program Statements

-

-

Program statements allow you to define variable types, initialize and allocate
memory, perform input and output, and control the sequence in which
statements are executed.

Most progrnm statements can be used in immediate lines as well as in
programs. For example:

PHINT 2:3 -~ 11

is an immediate line. As soon as you end the line by pressing ENTER ,
BASIC executes it. But the line:

100 PRINT 23 * 11

is a program line. When you press 13aj§;1. BASIC does not execute the
line but stores in memory to be executed when you type RUN.

77

-

-

-

Definition and Intialization
The statements in thi s cate9orv Perform one or more of three
f u r, ,:: t i ,:, rr ==· .

T hey chan9e default values set in itially bv BASIC.
instance, UPon initialization, BASIC sets variable
sirr9le-preci sio n . But the statement

DEFDBL_ \.,,1

resets V to double - Precision.

Thev reserve and allocate memorv sPace.

F ,:rr·
1.,,1 t,:,

se ts off enou9h me mory to hold a 169 (13 X 13) element array.

They reset and initia l ize BASIC's Pointe rs . Thi:- ::. ta t(",!ffi@ rr 1:

RESTORE

causes BASI C's data Point e r to be reset to the first data
i tl:.'m .

79

CLEAR
Clear Variables and Allocate String Space

CLEAR string space
string space is a numeric expression; if stringspace is omitted, string space

allocation is•unchanged.

When used without an argument, CLEAR sets all numeric variables to zero,
and all string variables to null. When used with an argument, this command
performs a second function in addition to the one just described: it causes the
Computer to set aside for string storage the specified numberofbytes. When
BASIC is initialized I 00 bytes are automatically set aside for strings.

The amount of string storage CLEARed must equal or exceed the greatest
number of characters stored in string variables during execution; otherwise
an Out of String Space error will occur. By setting string storage to the exact
amount needed, your program can make more efficient use of memory. A
program which uses no string variables could include a CLEARO statement,
for example.

Examples
CLEAR

All variables are cleared but string space is unchanged.

CLEAR 75

All variables are cleared and 75 bytes of memory are reserved for string
storage.

Sample Program

60 CLEAR 100
7 0 PRI NT FRE (A$)
80 CLEAR 0
9 0 PRINT FRE (A$)
100 CLEAR 100

Since CLEAR initializes all variables, you must use it near the beginning of
your program, before any variables have been defined.

80

-

-

-

-

-

DATA
Store Program-Data

DAT A item-list
item fist is a list of string and/or numeric constants, separated by commas.

The DATA statement lets you store data inside your program to be accessed
by READ statements. The data items will be read sequentially, starting with
the first item in the first DA TA statement, and ending with the last item in the
last DAT A statement. Expressions are not allowed in a DAT A list. If your
string values include leading blanks, colons, or commas, you must enclose
these values in quotes.

DATA statements may appear anywhere it is convenient in a program.
Generaly, they are placed consecutively, but this is not required. It is
important that the data types in a DAT A statement match up with the
variable types in the corresponding READ statement.

Examples

DATA NEW YORK, CHICAGO, LOS ANGELES, PHILADELPHIA, DETROIT

This line contains five string data items. Note that quote marks aren' t needed,
since the strings contain no delimiters or leading blanks.

DATA 2.72, 3.14159, 0.0174533, 57.29578

This line contains four numeric data items.

DATA "SMITH, T.H.", 38, "THORN, J.R.", 41

The quote marks are required around the first and third items.

81

Sample Program

j70 CLS: PRINT: READ HEADINGS: PRINT HEADING$: PRINT STRING

180 ON ERROR GOTO 500
190 READ C$: READ DOB: READ NS
7 00 PRINT CS, DOB, NS: GOTO 190
210 DATA COMPOSER DATE OF BIRTH
:?20 Dl'\TA P,O CCHE RIN I, 174:.~,
230 DATA GLUCK, 1714,
~ 40 DATA HAYDN , 1732 ,
25 0 DATA MOZART, 1756 ,
~,00 IF E:Fm =• Lt T HEN END
510 ON ERROR GOTO 0

NATIONt'.liLIT\'
I Tt1L I AN
\jEr<MAN
AUSTHIAN
AU~H Hll'\N

This program prints a list of some major composers of the late 18th Century.
Notice we use an ON ERROR GOTO statement to allow the inclusion of
data lists of unknown length. For a different means of achieving the same end,
see the sample program for READ.

82

-

-

-

DEFDBL e Define Variables as Double-Precision

DEFDBL letter list
letter list is a sequence of individual letters or letter-ranges; the elements in

the list must be separated by commas.
a letter-range is of the form:

lettert - letter2

DEFDBL causes variables beginning with any letter specified in letter list to
be classified as double-precision, unless a type declaration character is added
to the variable name. Double-precision values include 17 digits of precision,
though only 16 are printed out.

DEFDBL is ordinarily used at the beginning of a program. Otherwise, it
might suddenly change the meaning of a variable that lacks a type declaration
character.

Examples
DEFDBL K

causes any variable beginning with the letter K to be double-precision.

- DEFDBL Q, S-Z, A-E

-

causes any variable beginning with the letters Q. S through 2 , or A through E
to be double-precision.

Sample Program

570 DEFDBL X
580 A; 3.1415926535897932
590 X = 3.1415926535897932
600 PRINT "PI IN SINGLE PRECISION IS" A
610 PRINT "PI IN DOUBLE PRECISION IS" X

83

DEFFN
Define Function

DEF FN function name (argument-1 ...) = formula
function name is any valid variable name.
argument-1 and subsequent arguments are used in defining what the

function does.
formula is an expresson usually involving the argument(s) passed on the

left side of the equals sign.

The DEF FN statement lets you create your own function. That is, you only
have to call the new function hy name, and the associated operations will
automatically be performed. Once a function has heen defined with the DEF
FN statement, you can call it simply by inserting FN in front of function name.
You can use it exactly as you might use one of the built-in functions, like SIN,
ABS and STRING$.

The type of variable used for function name determines the type of value the
function will return. For example, if function name_ is single precision, then
that function will return a single-precision value , regardless of the precision of
the arguments.

The particular variables you use as arguments in the DEF FN statement
(argument-I, ...) are not assigned to the function. When you call the function
later, any variable name of the same type can be used.

Furthermore, using a variable as an argument in a DEF FN statement has no
effect on the value of that variable. So you can use that particular variable in
another part of your program without worrying about interference from DEF
FN.

The function must be defined with at least one argument. In other words,
there must he at least one variable in the position of argument-I above, even if
this variable is not actually used to pa<;s a value to the function.

84

-

-

-

Examples

DEF FNR{A,B) =A+ INT((B - (A - 1)) * RND(0))

This statement defines function FNR which returns a random number
between integers A and B. The values for A and Bare passed when the
function is "called", i.e., used in a statement like:

Y = FNR (R 1, R2)

If Rl and R2 have been assigned the values 2 and 8, this line would asign a
random number between 2 and 8 to Y.

DEF FNL$(X) = STRING$(X, "-")

Defines function FNL$ which returns a string of hyphens, X characters long.
The value for Xis passed when the function is called:

PRINT FNL$(30)

This line prints a string of 30 hyphens.

Here's an example showing DEF FN used for a complex computation - in
double precision.

DEF FNX#(A#, B#) = {A# -B#) * {A# - B#)

Defines function FNX# which returns the double-precision value of the
square of the difference between A# and B#. The values for A# and B# are
passed when the function is called:

S# = FNX#(A#, B#)

We assume that values for A# and B# were assigned elsewhere in the
program.

Sample Program

710 DEF FNV(T) = (1087 + SQR(273 + T))/16.52
720 INPUT "AIR TEMPERATURE IN DEGREES CELSIUS"; T
730 PRINT "THE SPEED OF SOUND IN AIR OF" T "DEGREES

CELSIUS IS II FNV (T) "FEET PER SECOL~L'.

85

DEFINT
Define Variables as Integers

DEFINT letter list
letter list is a sequence of individual letters or letter-ranges; the elements in

the list must be separated by commas.
a letter-range is of the form:

letter1 - letter2

DEFINT causes variables beginning with any letter specified in letter list to be
classified as integer, unless a type declaration character is added to the
variable name. Integer values must be in the range (-32768,32767). They are
stored internally in two-byte , two's complement form.

DEFINT may be placed anywhere in a program, but it may change the
meaning of variable references without type declaration characters.
Therefore, it is normally placed at the heginning of a program.

Examples

DEFINT A,I,N

After the above line , all variables heginning with A, I, or N will be treated as
integers. For example, A 1, AA. 13, and NUMBER will be integer variahles.
However, Al#, AA#, 13#, and NUMBER# would still be douhle-precision
variables, because type-declaration characters always override DEF
statements.

DEFINT I-N

causes any variable beginning with the letters I through N to be treated as an
integer variable.

Sample Program

86

i:lf.30 DEF I NT W
l:::• .:(?I Z ::;:; l " •=i(.?Cj'9f:I ~ \,.J = l • c;,c19r::;·s·
'?0(Zf Pl~INT "Tl-IF: \//\LUE OF ~3I NGL.E --PF£CihlON Z IF; " l

c;•10 f--iRJ:NT "BUT T HE Vl\l..UE OF INTEGE: H H If., " t,J

-

-

-

-

-

DEFSNG
Derme Variables as Single-Precision

DEFSNG letter list
letter list is a sequence of individual letters or letter-ranges; the elements in

the list must be separated by commas.
a letter-range is of the form:

letter1 - letter2

DEFSNG causes variables beginning with any letter specified in letter list to
be classsified as single-precision, unless a type declaration character is added
to the variable name. Double-precision values include 7 digits of precision,
though only 6 are printed out.

Example
DEFSNG I, W-Z

causes any variables beginning with the letters I or W through Z to be treated
as single-precision. However, 1% would still be an integer variable, and I# a
double-precision variable, because of their type declaration characters.

Sample Program
960 CLS: DEFINT P: PI = 3.14159
970 PRINT "ALL P'S ARE INTEGERS: WE CAN ONLY MAKE PI=" PI
980 INPUT "WANT TO MAKE p•s SINGLE-PRECISION WITH DEFSNG CY /
N) II ; A$

990 IF A$= "N" THEN END
1000 CLS: DEFSNG p: PI= 3 .14159
1010 PRINT "NOW ALL p•s ARE SINGLE-PRECISION; WE CAN MAKE PI

:::" Pl

87

DEFSTR
Define Variables as Strings

DEFSTR letter list
letter list is a sequence of individual letters or letter-ranges; the elements in

the list must be separated by commas.

a letter-range is of the form:
letter1 - letter2

DEFSTR causes variables beginning with any letter specified in letter list to
be classified as strings, unless a type declaration character is added to the
variable name.

Example
L'Lr·\jl 1--.: C , L.··-7

causes any variables beginning with the letters C or L through Z to be string
variables. unless a type declaration character is added. After this line is
executed, Ll = "WASHING TON" will be valid.

-

Sample Program -

70 S = 555: PRINT "S =" S
80 DEFSTR S
90 S = "SALTON SEA": PRINT "S =" S

-
88

-

-

DEFUSR
Derme Point of Entry for USR Routine

DEFUSRn = address
n equals one of the digits 0, 1, ... ,9; if n is omitted, o is assumed.
address specifies the entry address to a machine-language routine. Address

must be in the range [-32768, 32767].

DEFUSR lets you define the entry points for up to 10 machine-language
routines.

Examples
DEFUSR3 ::.-:: l!~H7Dli'.H~

assigns the entry point 7D00 hex, 32000 decimal, to the USR3 call. When
your program calls USR3, control will branch to your subroutine beginning at
hex7D00.

DEFUSR = (BASE+ 16)

assigns start address (BASE+ 16) to the USR0 routine.

89

DIM
Set Up Array

DIM array1 (dimension list) array2(dimension list)
array 1, array2, . .. are variables which name the array(s).
dimension lists are of the form:

subscript1, subscript2, ...
each subscript is a numeric expression specifying the highest-num­
bered element in that dimension of the array.

Note: The lowest element in a dimension is always zero.

This statement sets up one or more arrays for structured data processing.
Each array has one or more dimensions.

Arrays may be of any type: string, integer, single-precision or doublc­
precision , depending on the type of variable name used to name the array.

When the array is created, BASIC reserves space in memory for each element
of the array. (For string arrays, BASIC reserves space for pointers to the
string elements, not for the elements themselves.) All elements in a newly
created array arc set to zero (numeric arrays) or the null string (string arrays).

Arrays can be created implicitly, without explicit DIM statements. Simply
refer to the desired array in a BASIC statement, e.g. ,

1\ (5) :::: J i/j(ij

If this is the first reference to array A(), then BASIC will create the array and
a"sign element A(S) the value of300. Each dimension of an implicitly defined
array is defined to be 11 elements deep, subscripts 0-10.

When an array has been defined, it cannot he re-dimensioned. You must
clear the array first (with ERASE, CLEAR or NEW or other variable­
clearing operation).

Examples
D IM i<\H(l.00)

Sets up a o ne-dimensional array AR() , containing 101 elements: A(O),
A(l), A (2), .. . , A(98), A(99) , and A (lOO). The type ofthe array depends on
the type of the name AR. Unless previously changed by a DEFlNT.
DEFDBL or DEFSTR statement, AR is a single-precision variable.

Note: The array AR() is completely independent of the variable AR.

DIM 1... 1. 'X, ((3 ~ 2':".)

Sets up a two-dimensional a rray Ll %: (,), containing 9 x 26 integer
eleme nts, LI%(0,0), Ll C!t: (1,0), Ll %(2.0), . .. , L1 % (8,0) , Ll % (0, 1),
Ll % (1, l) , . .. , LI % (8,1), . .. , Ll % (0,25),Ll %(1,25), .. . , LF/0(8,25).

90

-

-

-

-

-

-

Two-dimensional arrays like AR(,) can be thought of as a table in which the
first subscript specifies a row position , and the second subscript specifies a
column position:

0 ,0
1,0

7,0
8.0

0,1
1,1

7,1
8,1

0,2
1,2

7,2
8,2

Sets up three arrays:

0 ,3
1,3

7,3
8,3

0,23
1,23

7,23
8,23

0 ,24
1,24

7,24
8,24

Bl (, ,) and CR (, ,) are three-dimensional , each containing
3*6*9 elements.

LY(,) is two-dimensional, containing 51 *3 string elements.

Sample Program

17 0 CLEA R 4000: CLS
INPUT "HOl•i M1\ NY MEMBF.:.HS IN T HE:. CU ..Je, 11

; M
I) I M U i.; (M , L1.)

F; OR I ;cc :l TO M

0,25
1,25

7,25
8,25

l.BllJ
190
::200
2 1i2)
2:::~0
2:30
:240

PRINT "NAME OF MEMBER#" I;: L INE INPUT " ? " ;
INPUT "AGE"; LS (I , 2)
INPUT "PHONE"; L$ (1, 3)
L INE INPUT "ADDF~E!3~3? 11

; L$ (I, L~)

Z :i lZI NE:XT I
;~b ~~ PRINT
270 PRINT "THE L I ST IS STORED AS FOLLOWS :"
2 130 PR I NT II N,l\ME: " , 11 1-'-iGF.~" , " PHONE 11

,
11 ADDf~EGS "

2 90 PRINT STRING$ (80, " - ")
300 FOR I - 1 TOM
310 FOR J = 1 TO 4
320 PRINT L.$(I,,J) ,
::.B iZJ NE XT ,J
3L~ ~~ P RHH
3 ~',0 NE XT I

L. $ (1,1)

91

ERASE
Delete Array

ERASE array1, array2, ...
array1, array2 are variable names for currently defined arrays.

The ERASE statement eliminates arrays from a program and allows their
space in memory to be used for other purposes. ERASE will only operate on
arrays. It can't be used to delete single clements of an array.

If one of the arguments of ERASE is a variable name which is not used in the
program, an Illegal Function C.-:111 will occur.

Arrays deleted in an ERASE statement may be re-dimensioned.

Example

Erases the three specified arrays.

Sample Program
i.• li.11iJ DI !''I
L• H, FO H .f.c:::v1 TO :'J
42\tJ
'-1-30
. l, .f.1. ~1

FOR ,J ,c::Vi T•.) 1":i
::< =:, ::< + :I .
A (I , J.) "'" X
PR T ~,IT 1\ (I • ,T) ~
l\lFXT J ,'.1-'.:'l!i.)

L1-6 f/ l NLXT I
'+ -7 [1 t:: F: /\ ~3 E~ t\
L,80 D 1 M t, (:L ll)(;:,'!)

The array that is set up in line 400 is destroyed by the ERASE A statement in
line 470. The memory space which is thereby released is now available for
further use. The array may be re-dimensioned, .-:1s we've chosen to do in line
480.

92

-

-

-

,,

RANDOM
Reseed Random Number Generator

RANDOM

RANDOM reseeds the random number generator. If your program uses the
RND function , the same sequence of pseudorandom numbers will be
generated every time the Computer is turned on and the program loaded.
Therefore, you may want to put RANDOM at the beginning of the program.
This will ensure that you get an unpredictable sequence of pseudorandom
numbers each time you load the program.

Random needs to execute just once.

Sample Program

61210 CLS: RANDOM
610 INPUT II PIO< A NUMBER BETWEEN 1 AND 5 II ; A
620 B = RND(5)
630 IF A = B THEN 650
640 PRINT "YOU LOSE, THE ANSWER IS" B II -- TRY AGAIN.
645 GOTO 61121
650 PRINT "YOU PI C~<ED THE RIGHT NUMBER --- YOU l-JIN~":

II

GOTO 61 f2l

93

REM
Comment Line (Remarks)

REM

REM instructs the Computer to ignore the rest of the program line . This
allows you to insert remarks into your program for documentation. Then,
when you (or someone e lse) look at a listing of your program, it will be easier
to figure out.

If REM is used in a multi-statement proram line, it must be the last statement.

An apostrophe(') may be used as an abbreviation for :REM.

Examples
' THIS IS A REMARK

Sample Program

780 REM CUSTOMER LOADING PROGRAM
790 REM THESE LINES ARE INSTRUCTIONS TO THE OPERATOR
800 PRINT "LOADING CUSTOMER FILE"
810 PRINT "THE SCREEN WILL SHOW YOU A SAMPLE ENTRY"
820 REM THE NEXT LINE SETS A PAUSE BEFORE CLEARING THE SCREEN
830 FOR N=1 TO 1500: NEXT
840 CLS
850 REM THE NEXT LINES SET THE SAMPLE DISPLAY

The above program shows some of the graphic possibilities of REM
statements. Any alphanumeric character may be included in a REM
statement, and the maximum length is the same as that of other statements:
255 characters total.

94

-

-

-

-

RESTORE
Reset Data Pointer

RESTORE

RESTORE causes the next READ statement to be executed to start over
with the first item in the first DAT A stateme nt. This Jets your program re-use
the same DAT A lines.

Sample Program
160 READ X$
l 7f.:1 F~ESTOHE
1812) REM) Y$
l9(ZJ PrUNT x1; , v ii;
200 DATA THIS IS THE FIRST ITEM, AND THIS IS THE SECOND

When this program is run ,

THIS IS THE FIRST ITEM THIS IS THE FIRST ITEM

will be printed on the Display. Because of the RESTORE statement in line
170, the second READ statement starts over with the first DAT A item.

95

-

-

-

Assignment

An assi9nment stateme nt Puts a certain va lue into a variab l e
or field or trade s the value of one variable with another.

LSET COLORS= "VERMI L ION"

Thi s statement assi9n s the value VERMI LION to the field
COL.OH$.

SWAP AX, 8'l.

A% and 8% exchan9e val ues with one another.

97

LET
Assign Value to Variable

LET variable = expression

LET may be used when assigning values to variables. Model 11 BASIC
docsn 't require assignment statements to begin with LET, hut yo u might want
to use it to ensure compatibility with those versions of BASIC that do require
it.

Examples

LET tvt;
L.FT F~1
L.E:T X ::::· X ····· 7 'i

In each case, the variable on the le ft side of the equals sign is assigned the
value o f the constant or expression on the right side .

Sample Program

550 P = 1001: PRINT " P =" P
560 LET P = 2001: PR INT " NOW P - " P

98

-

-

-

-

-

-

LSET and RSET
Place Data in a Direct Access Buffer Field

LSET name = data and RSET name = data
name is a field name
data is the data to be placed in the buffer field named by name

These two statements let you place string data into fields previously set up by
a FIELD statement.

Examples
Suppose NM$ and AD$ have been defined as field names for a direct access
file buffer. NM$ has a length of 18 characters; AD$ has a length of25
characters. The statements

LSET NM$ - "JIM CRICKET ,JR."
L.SE::T /\D$ " :::-v1i7.1e,1 E/.,DT P[: C:1\r,.i En·, "

put the data in the buffer as follows:

I JIMJpCRlCKET,JR.Jplplp I 1 20001pEASTJpPECANJpST.Jplplplplplp I

Notice that filler b 1 an ks were placed to the right of the data
strings in both cases. If we had used RSET statements instead of LSET, the
filler spaces would have been placed to the left. This is the only difference
between LSET and RSET.

If a string item is too large to fit in the specified buffer field, it is always
truncated on the right. That is, the extra characters on the right are ignored.

99

MID$=
Replace Portion of String

M1D$=(oldstring, position, length) = replacement-string
oldstring is the variable-name of the string you want to change
position is the numeric expression specifying the position of the first charac­

ter to be changed
length is a numeric expression specifying the number of characters to be

replaced
replacement-string is a string expression to replace the specified portion of

oldstring

Note: If replacement-string is shorter than length, then the entire replace­
ment-string will be used.

This statement lets you replace any part uf a string with a specified new string.
giving you a powcrlul string editing capability.

Note that the length of the resultant string is always the same as the original
s tring.

Examples:

A$= "LINCOLN" in the examples below:

which returns LII234N.

l ' :.::) -·-

which returns LINCOLN.

returns LINC123.

MID·$ ((d-; ·., ''i i -- " (;) :i. " '-

re turns LIN CO IN.

returns ***COLN.

Sample Program
770 CLS: PRINT: PRI NT

/\ ri::
I l'V'

7 E: lt.l LIJ\IF INPUT "T··,··F'F. JN /'>, i"IUl\iTH t\1-.JD f),t.:,·/ i'i l"1 /D£:•. " ; H<ii
7 -1r21 fl ·cc I i'-!';TH (Ut, '.' " /"
8 00 !F P = 0 lHEN 7 80

This program uses INSTR to search for the slash(" /"). When it finds it (if it
finds it) , it usesMID$ = to substitute a .. _ " (CHR$(45)) for it.

100

-

-

-

-

-

-

READ
Get Value from DAT A Statement

READ variable

READ instructs the Computer to read a value from a DATA statement and
assign that value to the specified variable. The first time a READ is executed,
the first value in the first DATA statement will be used; the second time, the
second value in the DAT A statement will be read. When all the items in the
first DATA statement have been read, the next READ will use the first value
in the second DATA statement; etc. (An Out-of-Data error occurs if there
are more attempts to READ than there are DAT A items.)

Examples

reads a numeric value from a DAT A statement.

RE1\ D ~3$

reads a string value from a DAT A statement.

Sample Program
This program illustrates a common application for READ and DAT A
statements.

40 PRINT "NAME","AGE"
50 READ I'll$
60 IF NS=" END " THEN PRINT "END OF LIST" : END
70 RF1\D 1-V:iE
8 0 IF AGE<lB THEN PRINT NS,AGE
90 GOTO SIZl
1012) DATA "SMITH, LTOHN", 30, "ANDERSON, T.M. 11

, 20
:l:1.0 DATA ",.JONES, BILL.", 15, "DOE, SALLY" , :21
120 DATA "COLLINS, W.P. ", 17, END

101

-RSET
P l ace Data i n a Dir e c t Ac c ess B u ffe r Fiel d

SEE LSET f or s v n t ax and de scr iPt i on .

-

102 -

-

-

-

SWAP
Exchange Values of Variables

SWAP variable 1, variable 2

The SW AP statement allows the values of two variables to be exchanged.
Either or both of the variables may be elements of arrays. If one or both of the
variables are non-array variables which have not had values assigned to them,
an Illegal Function Call error will result. Both variables must be of the same
type or a Type Mismatch error will result.

Example

The contents of F2# are put into Fl#, and the contents of Fl# are put into
F2#.

Sample Program

:::::,(1 INPUT "TYPE IN A \/AL.UL FOF: F$ " ; F:$
260 INPUT "TYPE IN A VALUE FOR LS"; L$
:?70 S~Jt~P F$, l..$
280 PRINT "AFTER SWAP, FS =" FS" AND LS - " LS

103

-

-

c. Program Sequence
Contr o l in a BASIC Pro9am normallv Proceeds from one line to
the next hi9her-numbered line t o the n e x t hi9her-numbe red
lin~"f, ur1til trie er1d ,:,f the Pr·o9r·am is. r·eac he,j . The Pr·,:,gr•am
se~uence statements can be u sed to alter this steP-bY-steP
Process. With the helP of these statements, YO U can alter the
transfer of control in vour BASIC Pro9ram to produ ce Jumps to
other parts of the pro9ram, iterative loops, and other u se ful
control s truct ures.

For examPle, the statement

IF NOT X > 5 AND NOT Y > 8 THEN 100

transfers control
a t the same time,

t o line 100 if X is not 9reater than S,
Y is not greater than 8 .

FOR I= 1 TO 10000: NEXT I

Pro9ram control will Pass back a nd forth between t h e FOR
s tatement and the NEXT statement ten thousand time s before
movin9 on to th e next line , causin9 a delay of aPProximatel v
e l -2 v '2 n s. e c ,:, ri ,j ::, . •

105

END
Terminate Program

END

ENO terminates execution of a rrogram whenever it is reached in a rrogram
line. Some versions of BASIC require FND as the last statement in a
rrogram. In Model II BASIC it is optional. END is primari ly used in Model II
BASIC to force execution to terminate at some point other than the logical
end of the program.

Sample Program
Li ,11 i N F--' U 'T '.::; 1 , :::: : :'.
Iii V1 (jOSUF'., l lZlk;i
~-•~) PH I N"I' H
btl.! E:l'H)
100 H=SQR(S l*Sl + S2*S2 l
1. 111) l<E.TUHl'-l

The END statement in line 60 prevents program control from --crashing" into
the subroutine. Now line HX) can only be accessed by a branching statement
such as 50 GOSUB 100.

106

-

-

-

-

-

FOR/NEXT
Establish Program Loop

FOR variable = initial value TO final value STEP increment
NEXT variable

variable is any valid variable name; variable is optional after NEXT
initial value, final value, and increment are numeric constants, variables, or
expressions.
STEP increment is optional; if STEP increment is omitted, a value of 1 is

assumed.

FOR . . . TO ... S1EP/NEXT opens an iterntive (repetitive) loop so that a
sequence of program statements may be executed over and over a specified
number of times.

The first time the FOR statement is executed, variable is set to initial value.
Execution proceeds until a NEXT is encountered. At this point, variahle is
incremented by the amount specified in step increm ent. (If increment has a
negative value, then variable is actually decremented.) S1EP increment is
often omitted, in which case an increment oft is used.

Then variable is compared with final value. If variable is greater than final
value, the loop is completed and execution continues with the statement
following NEXT. (If increment is a negative number, the loop ends when
variable is less than final value.) If variable has not yet exceeded final value ,
control passes to the statement following the FOR statement.

Sample Programs

R~m FOR I - 10 TO 1 STEP -
F::,+Vi PH l NT J ;
U':".iG'.1 NE:X:T

When this program is run, the following output is produced:

10 9 8 7 6 5 4 3 2 1

FOR NEXT loops may be "nested":

F~f.31;11
[~f1'fi~

'}(/J(i.l

')HJ

F(l1·'{ I :·: 1 T(1 •.. ,

PF-<Ir-..!T '' (ii,JTF"f~
r:·o H .J 0·­

Pn J I\IT "
1,tF/ T .,

l. ()()F' "
·I ·-;--,·,
.,. ! ~.,; ,:.

I NN!:::.1-J

NEXT can be used to close nested loops, by listing the counter-variables. For
example , delete line 920 and change 930 to:

107

GOSUB
Go to Specified Subroutine

GOSUB line number.

GOSUB transfers program control to the subroutine beginning at the
specified line number. When the Computer encounters a RETURN
statement in the subroutine , it then returns control to the statement which
followsGOSUB . GOSUB is similar to GOTO in that it maybe preceded bya
test statement.

Example

When this line is executed, control will automatically branch to the sub­
routine at 1000.

Sample Program

::C::/(,j F'P INT " H1\Cf< FHOM ~}UP.nOUTT(ff: "; FN:O
2!:lFJ Pl~ I NT "Fxr: cuT ll\lG THF ~;l}fi,HO\f"f" J !\JC"
:::::·-:;~:-:1 nE·rti r~:,~~

Control is transferred from line 260 to the subroutine beginning at line 280.
Line 290 instructs the Computer to return to the statement immediately
following GOSUB.

108

-

-

-

-

-

-

GOTO
Go To Specified Line Number

GOTO line number

GOTO transfers program control to the specified line number. Used alone ,
GOTO line number results in an unconditional (automatic) branch.
However, test statements may precede the GOTO to effect a conditional
branch.

You can use GOTO in the command mode as an alternative to RUN. GOTO
line number causes execution to begin at the specified line number, without an
automatic CLEAR. This le ts you pass values assigned in the command mode
to variables in the execute mode.

Example

(:iOTO :1. ,1ii~
When this line is executed, control will automatically be transferred to line
100.
Sample Program
160 GOTC! ~-:-:l"JJl2l
170 PRINT " AND ARAMIS -- AND D'ARTAGNAN MAKLS FOUR.": END
180 PRINT "PORTHOG, " ;
190 GOTO 170
2 0 0 PRINT " ATHOS , " ;
210 GOTO 180

109

IF ... THEN ... ELSE
Test Conditional Expression

IF test THEN statement or line number ELSE statement or line number
ELSE statement or line number is optional.

The IF ... THEN ... ELSE statement instructs the Computer to test the
following logical or relational expression. If the expression is true. control will
proceed to the THEN clause immediately following the expression. If the
expression is false, control will jump to the matching ELSE statement (if one
is included) or down to the next program line:.

Examples
IF

IfX is greater than 127. control will pass to PRINT and then to END. IfX is
not greater than 127, control will jump down to the next line in the program,
skipping the PRINT and END statements.

IF X > 0 ANDY<> 0 THEN Y = X + 180

If hoth expressions are true. then Y will be assigned the value X + 180.
Otherwise controi will pass directly to the next program line. skipping the
THEN clause.

Tl·. l '.i, II ~ • . • ! .. /; _;

If A is less than B, the Computer prints the fact and then proceeds down to
the next program line. skipping the ELSE statement. If A is not less than B.
the Computer _jumps directly to the ELSF. statement and prints the specified
message. Then control passes to the next statement in the program.

I F i'l !f> "· "YES " THEN 2 1('.'J Fl.SF 1.F A$ =: "i\l(l " ·r HE !\J :1. (Zl ('.l F:Lf-F: :T70

If A$ is YES then the program branches to line 210 . If not, the program
skips over lo the first ELSE, which introduces a new test. If A$ is NO then the
program branches to line 400 . If A$ is any value hesides NO or YES, the
program skips to the second ELSE and the program branches to line 370:.

110

-

-

-

-

-

-

IF A > .001 THEN B ~ 1/A: A= A/ 5 : ELSE 1510

If the value of A is indeed greater than .001 , then the next two slatements will
be executed, assigning new values to Band A . Then the program will drop
down to the next line, skipping the ELSE statement. But if A is less than or
equal to .001, then the program jumps directly over to ELSE, which then
instructs it to branch to 1510. Note that GOTO is not required after ELSE.

Sample Program
IF THEN ELSE statements may be nested . However, you must take care to
match up the IFs and ELSEs.

1040 INPUT "ENTER TWO NUMBERS "; A, B
1050 I F A<= B THEN IF A< B THEN PRINT A; ELSE
PRI NT "NEI THER»; ELSE P RINT B;
1060 PRINT "IS S MALLER THAN THE OTHER. "

For any pair of numbers that you enter, this program will pick out and print
the smaller of the two.

111

ON ... GOSUB
Test and Branch to Subroutine

ON expression GOSUB line number, line number . ..
expression is a number between o and 255.

ON ... GOSUB is a multi-way branching statement like ON GOTO ,,except
that control passes to a subroutine rather than just being shifted to another
part of the program. For further information , sec ON GOTO.
Example

ON Y GOSUB 1000, ?000, ~800

When program execution reaches the line above, ifY = 1. the subroutine
beginning at 1000 will be called. If Y = 2, the subroutine at 2000 will be called.
If Y = 3, the subroutine at 3000 will be called.

Sample Program
L1.:Jf'.1 I NF'I.JT ., Cl···IOUSF ., ::? , (:oh: ::'. i;

440 ON I GOSU8 500, 600, 700
"-1"::,Vi END
::,iLiiD F'F: NT "~::ut=:·-FWUT I NE: tt :l" : Fi[Ti_)Hh!
h@/i PF/ NT " ::;i . ..Jp.[~(ll JT Tl'-ii':. i-t-2" : HF:TUH!'·.J
7iZWt Pn l'-.JT a (.3UF', i~OUTTI\IL #~•: a: fi FTUf:::'hl

112

-

-

-

- ON ... GOTO
Test and Branch to Different Program Line

ON test-value GOTO line number, line number, ...
test value is a numeric expression between O and 255.

ON . . . GOTO is a multi-way branching statement that is controlled by a test value.

When ON ... GOTO is executed, test-value is evaluated and the integer portion is
obtained. We'll refer to this integer portion as J. The Computer counts over to the Jth
line number in the list of line numbers after GOTO, and branches to this line number.
If there is no Jth line number, then control passes to the next statement in the
program.

Notice that if test value is less than zero, an error will occur. There may be any
number of line numbers after GOTO.

- Examples

-

ON MI GOTO 150, 160, 170• 150, 180

says "Evaluate MI.
If integer portion of MI equals 1 then go to line 150;
If it equals 2, then go to 160;
If it equals 3 , then go to 170;
If it equals 4, then go to 150;
If it equals 5, then go to 180;

If the integer portion of MI doesn' t equal any of the numbers 1 through 5, advance to
the next statement in the program."

113

Sample Program

l 'jki
/h(/1
1'/(ZJ
)'8(ZI

··7 f/fjJ

/\ h !\/
1· 'O I ' I ',

c11-...; ~;c~I\! (>:) + -~· r~cj·r() lttlJ~ ·/F:t/1., -/~-/0
Pr-< T r\~-r i: 1·)t::::cir.., ·1· l \1r:: ,; ~ E:r;,if)
F'H I i\l'T H ZE RO II : F},I))

r.) i-f I r·fr " F'()F: :r. ·r I ' .. /r: 11 ~ [:t\ro

SGN(X) returns -1 for X less than ze ro ; 0 for X equal to zero; and + 1 for X greater
than 0. By adding 2, the expression takes on the values 1, 2, and 3, depending on
whether Xis negative, zero, or positive. Control then branches to the appropriate
line number.

114

-

-

-

-

-

-

RETURN
Return Control to Calling Program

RETURN

RETURN ends a subroutine by returning control to the statement
immediately following the most-recently executed GOSUB. If RETURN is
encountered without execution of a matching GOSUB, an error will occur.

Sample Program

330 PRINT " THIS PROGRAM FI NDS THE AREA OF A CIRCLE"
340 :Cl\lf•UT "TYPE IN A V1-\LUE FOi~ THE f~/.\DJUfi" ; R
35l7.l GOSUB 370
360 PRINT "AREA IS"; A~ END
370 A= 3.14 * R * R
3B0 HETURN

115

-

-

-

-

-

-

d. Ir, Put /Out F>•J t

The inFut/output statements transfer data between the CPU and
P12r·iPher·al devic1:.~::; ..

LPRINT "This is a test"

sends the sentence "This is a test" to the Line Printer. The
'.:: ta. teme n t

GET 1

reads the current record from disk and Places it in direct
file buffer· #1.

For further information on file-access Pro9rammin9, see
Ch~.Pt,1r· 4.

11 7

-

-

-

-

- Keyboard

-
119

INPUT
Input Data to Program

INPUT "message"; variable 1, variable 2, ...

When BASIC encounters the INPUT statement in a program it stops
execution of the program until you enter certain values from the keyboard.
The INPUT statement may specify a list of string or numeric variables,
indicating string or numeric values to he input. For instance, INPUT X$, XI ,
Z$, Zl calls for you to input a string literal, a number, another string literal,
and another number, in that order.

When the statement is encountered, the Computer will display a ? . You may
then enter the values all at once or one at a time. To enter values all at once,
separate them by commas. (If your string literal includes leading blanks,
colons, or commas, you must enclose the string in quotes.)

If you ENTER the values one at a time, the Computer will display a ?? ,
indicating that more data is expected. Continue entering data until all the
variables have been set, at which time the Computer will advance to the next
statement in your program.

Be sure to enter the correct type of value according to what is called for hy the
INPUT statement. For example, you can't input a string-value into a numeric
variable. If you try, the Computer will display a ?REDO FROM ST ART and
give you another chance to enter the correct type of data value, starting with
the first value to be called for by the INPUT list.

If you ENTER more data elements than the INPUT statement specifies, the
Computer will display the message ?EXTRA IGNORED and continue with
normal execution of your program.

You can include a "prompting message" in your INPUT statement. This will
make it easier to input the data correctly. The prompting message must
immediately follow INPUT. It must he enclosed in quotes, and it must be
followed by a semicolon.

You can enter any valid constant. 2, 105, 1, 3#, etc. an;: all valid constants.

120

-

-

-

-

-

-

Examples

I MF·u·r y:,:

If this line were part of your program, when this line is reached, you must type
any integer number and press ENTER before the program will continue.

Here you would have to type in a string when this line is reached. The string
wouldn't have to be enclosed in quotation marks unless it contained a
comma, a colon, or a leading blank.

This line would print a message on the screen which would help the person at
the keyboard to enter the right sort of data.

Sample Program
:,0 INPUT "HOl•J MUCH DO YOU WE:~I GH"; X
60 PH r r-n 11 01\l MA Rb YOU l,JOUI ... D t,JE I GH t1BOUT II CI 1·-ir (X ·K- • ;3B) II POUNDS . "

121

LINE INPUT
Input a Line from Keyboard

LINE INPUT["prompf'] ;variable
prompt is a prompting message
var$ is the name that will be assigned to the line you type in

LINE INPUT (or LINEINPUT- the space is optional) is similar to INPUT,
except:

• The Computer will not display a question mark when waiting for your
operator's input

• Each LINE INPUT statement can assign a value to just one variable
• Commas and quotes your operator can use as part of the string input
• Leading blanks are not ignored - they become part of var$
• The only way to terminate the string input is to press U:f :ii#t;J
LINE INPUT is a convenient way to input string data without having to worry
about accidental entry of delimiters (commas, quotation marks, colons, etc.).
The •M~ii@;I key serves as the only delimiter. If you want anyone to be able
to input information into your program without special instructions, use the
LINE INPUT statement.

Some situations require that you input commas, quotes and leading blanks as
part of the date. LINE INPUT serves well in such cases.

Examples:

Input A$ without displaying any prompt.

Displays a prompt message and inputs data. Commas will not terminate the
input string, as they would in an input statement.

122

-

-

-

-

-

Sample Program

200 REM CUSTOMER SURVEY
2C:1'.:, CL.E,.; R 1 ~~(2)0
207 PFUNT
210 LINE INPUT "TYPE IN YOUR NAME"; A$
::::2v1 LINE INPUT " DO YOU LH-a.::: YOUf~ C(WIPUTE R? II; [?,:~
:;;:::m L.. :i: !\JE 1 NPUT " t-JHY ? " ; ct-
:~:3 ::, P I? I NT
240 PRINT A$: PRINT
250 IF BS= "NO" THEN 270
?60 PRINT "I LI KE MY COMPUTER BECAUSE"; C$:END
X/0 f"FnNT "I DO NOT LH<F: MY COMPUTER BECAUSf~~ 11

; C$

Notice that when line 210 was executed, a question mark was not displayed
after the statement, "Type in your name", Also, notice on line 230 you can
answer the question "Why" with a statement full of dclimcters (", ;'etc .).

123

-

- Video Display

-
125

CLS
Clear Screen

CLS

CLS clears the screen. It fills the display with blanks and moves the cursor to
the upper-left corner. Alphanumeric characters are wiped out as well as
graphics blocks. CLS can be very useful if you should want to present an
attractive Display output.

Sample Program

'::i 4fc:'J Cl..b
550 FOR I = 1 TO 24
560 PRINT STRING$(79,33)
~:i7(ZI NF:::;r;T I
"5F30 GOTO ~j ,:1.(Z1

-

-

-
126

-

-

-

PRINT, PRINT@, PRINT TAB,
PRINT USING
Output to Display

PRINT@ position, item list
@position is a number between O and 1919, or
@ position is two numbers,(rO\-J, column), row between O and 23 and

column between O and 79. if @ position is omitted, the current cursor
position is used.

item list is a list composed of any of the following items:
TAB (number)

number is a numeric expression between O and 255
constants
variables
expressions,

where any of these items may be separated by the optional delimiters ","
and11

;''.

PRINT@ position, USING format; item lisr
format is one or more of the field specifiers #, *, $,

%, !, " "(space), or any alphanumeric character.
item list is a list composed of constants and variables, which must be

separated by the delimiters "," or";".

PRINT prints an item or a list of items on the Display. The items to be printed
may be separated by commas or semicolons. If commas are used, the cursor
automatically advances to the next tab position before printing the next item.
If semicolons are used, spaces are not inserted between the items printed on
the Display. There are ten tab positions to a line, one at each 8-byte column
boundary.

Positive numbers are printed with a leading blank, instead of a plus sign. All
numbers are printed with a trailing blank. No blanks are inserted before or
after strings; you can insert them with the help of quotation marks.

A semicolon at the end of a line overrides the cursor-return so that the next
PRINT begins where the last one left off. If no trailing punctuation is used
with PRINT, the cursor drops down to the beginning of the next line.

127

E :,-,:amP l e ::..

PRINT "I" ,, "VOTED" "FOR" "THAT " "r~ASC,c.,
"DEWEY"

"I" is Printed at t ab Position 0.
Pr· inted at 28 ; "DEl..JEY" at 56 .

"VOTEDFORTHATRASCAL"

This line is fully equivalent to

Sample Program
7[i.l I\! =·· .L.
~Jv1 /\~: !; Ff;~::::F.1....~::;" : r·.-~. :":: ;, /.\!\fi) ivrv t.·-! 1 r:·r:. C1 t...,1r,J~; f:l ., 11

(?~~ P r< I b.i··i Ii J ()~\ll\i H

l k:i1J.1 f::• r:.:• 1 i·-..! · r E°' :=f

When run, this program gives

I OWN 6 EDSELS AND MY WIFE OWNS 8,"

Notice that "" prints a space.

PRINT@n
PRINT@) specifies exactly where printing is to begin. There must be no
spaces between PRINT and @. The location specified must be a number
between O and 1919.

Whenever you cause something to PRINT@ on the bottom line of the
display, there is an automatic line feed; everything on the Display moves up
one line. To suppres..'i this automatic line feed, use a trailing semicolon at the
end of the statement.

PRINT @ (11 , 3 9) , "*"

Prints an asterisk in the middle of the Display.

PRINT@ O, "*"

Prints an asterisk at the top lef t corner of the
Display.

128

-

-

-

-

-

-

Examples

PRINT@ ~50, "LOCAlION 5~0 •

Run this to find out where position 550 is.

Let's say the value of X in the above example is 7. "T' will be printed at
location 1001, not 1000. Recall that a positive number will be printed with a
leading blank to indicate its sign rather than a plus sign. Su a space is printed
at 1000 and the number itself is printed at 1001.

Sample Program
150 LINE INPUT "TYPE SOMETHING I N.
155 CLS YOU'LL GET AN ECHO."; L$ ~

160 PRINT@ 500, L$
170 PRINT@ 1000, L$
180 PRINT@ 1500, L$

PRINT TAB (n)

PRINT TAB moves the cun.or to the specified position on the current line (or
on succeeding lines if you specify TAB positions greater than 80). TAB may
be used more than once in a print list.

Since numerical expressions may be used to specify a TAB position, TAB can
be very useful in creating table~, graphs of mathematical functions, etc.

TAB can't be used to move the cursor to the left. If the cursor is to the right of
the specified position , the TAB statement will simply be ignored.

Example

PRINT TA8(5) "TABBED 5"; ·r l\E1
, (::S)

Notice that no punctuation is needed after the TAB modifiers.

Sample Program
220 CU-3

•·, i:: II .,··._,

2 30 PRINT TAB<2) "CATALOG NO."; TA8(16) "DESCR IPTION OF ITEM";
240 PRINT TAB(39) »QUANTITY"; TABC51) "PRICE PER ITEM";
245 PRINT TA8(69) "TOTAL PRICE"

129

PRINT USING format
The PRINT USING statement allows you to specify a format for printing
string and numeric values. It can be used in applications such as printing
report headings, accounting reports, checks, or wherever a specific print
format is required.

The PRINT USING statement ordinarily takes this form: PRINT USING
format, item list. PRINT USING takes the value item list, inserts it into the
expression format as directed by the field specifiers of format, and prints the
resulting expression. Format may be expressed as a variable as well as a
constant.

Examples of Field Specifiers

The following field specifiers may be used as part offormat:

This sign specifies the position of each digit located in the numeric value.
The number of# signs you use establishes the numeric field. If the
numeric field is greater than the number of digits in the numeric value,
then the unused field positions to the left of the number will be displayed
as spaces and those to the right of the decimal point will be displayed as
zeros.

The decimal point can be placed anywhere in the numeric field
established by the# sign. Rounding-off will take place when digits to the
right of the decimal point are suppressed.

The comma -when placed in any position between the first digit and
the decimal point - will display a comma to the left of every third digit
as required. The comma establishes an additional position in the field.

In all the examples below, the first line represents a program line as you might
type it in; the second line is the value returned after the first line has been run.

**

66
Pi-!ii'fr ;_y:;J!\iC ":M,ti,. i!:",. 1,:,n, /(,

58.8
PRINT USING"########~#,"; 123456787
123,456,789
Two asterisks placed at the beginning of the field will cause all unused
positions to the left of the decimal to be filled with asterisks. The two asterisks
will establish two more positions in the field.

r:-· 1--~~ I !\IT i.J ~::'.: I r\1 r~1 11
~- ~:- t-j: i4: ll: :1:1: 11

; .:'.j ... \ .. t?t

**** 44

-

-

-
130

-

-

-

$$ Two dollar signs placed at the beginning of the field will act as a
floating dollar sign. That is, the dollar sign will occupy the first
position preceding the number.

PRI NT USING "~$## .tt#"; 1 18 .6735, 462.9983• ~4.2~00

Sl18.n7$463.00 $34.25

**$ If these three signs are used at the beginning of the field, then the
vacant positions to the left of the number will be fiJled by the* sign
and the$ sign will again position itself in the first position preceding
the number.

+

PRINT US!NG "**S#. # #" ; 8.333
• • $8.33

When a + sign is placed at the beginning or end of the field, it will he
printed as specified as a + for positive numbers of as a - for negative
numbers

PRINT USING "+**#####"; /5200
• *+75200

PF/H'<IT ur:;HKi " +~hf*! "; -<:l b
-216

When a - sign is placed at the end of the field, it will cause a negative
sign to appear after all negative numbers. A space will appear after
positive numbers.

PRI NT 0~ 1NG " ####. # - "; - 8 124.42~
8124.4-

131

This causes the Computer tu use the first string character of the current
value.

PF, I l'-H U/31 NG

T

II f Ii • ,

o/o spaces% To specify a string field of more than one character,
c;~ spaces% is used. The length of the field will he the number
of spaces between the percent signs plus 2.

One space between the backs 1 ashes:

P fn NT uF; n·,JCJ "\ '\" ; "T 1\N 1,1\i\l Ji:\"

TAN

Four spaces between the backs 1 ashes:

F·F~ J NT Uf:,; I NG "\
T ANZANJ::THIOP

Any other character that you can include infonnatwill be displayed as a string
literal.

$8.63 BUCKS

If item fat is a numeric value, the% sign is automatically printed if the field is
not large enough to contain the number of digits found in the numeric value.
The entire number to the left of the decimal will be displayed preceded by this
sign.

(';I(; 100000. 0

132

-

-

-

-

-

-

Sample Program

!.'1. 2 f/1 CL i:::; : t, <(:; c::: " ·ls· ·K ;~;,j:j: :j:I: I =IHHF :j:j: l=H* " =It :j:j: Du i !..../\I?:::; ;;
11,:m I I\IPLil "l)ll/:."T I':::; 'lOUF~ F J. HST Nf.'.,ME" ; f:>=t:-
.t:1. --~1- ~1 1 r--.1 F' i.J ·r " i.,) l·-·l f\ ··1 :r ~:; \/ () 1.J H !'.,.! 1 rJ D 1.... f~: J\I t\ 11 r::: ,, ~ 1·-•1 ~~

1.,.::%:i Ii\lF'\Jl "kil··ll,T Ir: YUUF: lJ\~::;T r·,.!i\MF" !) L.'/i
l1./:,0 1 r-.lFilJT "FJ,.ITE: H /il·!OU!\lf Pf'.\'/ tBL C:" , F'
470 CLS: PRINT "PAY TO THE ORDER OF ";
,\flit_') PP T !'-,il U':3 J r,!Ci " • 1

580 PRINT: PRINT USING A$; P

In line 480, each ! picks up the first character of one of the following string
(F$, ". ", M$, and"." again). Notice the two spaces in "l! ! ! ". These two
spaces insert the appropriate spaces after the initials of the name (see below).
Also notice the use of the variables A$ for format and P for item list in line 500.
Any serious use of the PRINT USING statement would probably require the
use of variables at least for item list rather than constants. (We've used
constants in our examples for the sake of better illustration.)

When the program above is run, the output should look something like this:

WHAT IS YOUR FIRST NAME? JOHN
WHAT IS YOUR MIDDLE NAME? PAUL
WHAT IS YOUR I.AST NAME? JONES
ENTER AMOUNT PAYABLE? 12345.6
PAY TO TI-IE ORDER OF J.P. JONES
******** $12,345.60 DOLLARS

133

-

- Line Printer

-
135

LPRINT, LPRINT TAB, LPRINT USING
Output to Printer

LPRINT item list
item list is a list composed of any of the following items:

TAB (number)
number is a numeric expression between o and 1920

constants
variables
expressions

where any of these items may be separated by commas or semi-colons

LPRINT USING format; item list
format is one or more of the field specifiers #, •, $, %, !, or other characters.
item list is a list composed of constants and variables, which must be

separated by commas or semi-colons.

LPRINT, LPRINTTAB, and LPRINT USING allow you to output to the
Line Printer.

Examples

Sends the value of the expresion (A* 2)/2 to the Line Printer.

Moves the Line Printer carriage to tah position 50 and prints TABBED 50.

! PPll'·-!f UHIJ\!Ci II P1'1!1!t!:!: ,, :!!: ;' :: ? .. l i

Sends the formatted value2. 2 to the Line Printer.

For more examples and a more detailed explanation of how to use these
statements, see PRINT.

Sample Program

1 3 6

-

-

-

-

-

'

Disk

For proqramr.iinq information, see Chapter .11, "FilP. Access

Techniques."

137

CLOSE
Close Access to File

CLOSE buffer-number, buffer-number . ..
buffer-number = 1,2,3, ... 15

If buffer-number is omitted, all open files will be closed.

This command terminates access to a file through the specified buffer or
buffers. If buffer-number has not been assigned in a previous OPEN
statement, then

has no effect.

Do not remove a diskette which contains an open file. Close the file first. This
is because the last records may not have been written to disk yet. Closing the
file will write the data, if it hasn't already been written.

The following actions and conditions cause all files to be closed:

I\IEW <F:NTEF{>
i~Ul\i <F~,!TEI'.°.{>
MERGE fil espec <ENTER>
Edi t i r, 9 a. 1" i l e
Add in9 or deleti n9 pr o9ram line s
Execu t io n of the CLEAR s ta teme nt
D i ::=. k fi r· r· ,:, r· ::-

Examples

Terminates the file assignments to buffers 1, 2, and 8. These buffers can now
be assigned to other files with OPEN statements.

CLOSE FIRST%+ COUNT%

Terminates the file assignemcnt to the buffer specified by the sum FIRST% +
COUNT%.

13 8

-

-

,

-

-

FIELD
Organize a Direct File-Buffer Into Fields

FIELD buffer-number, length AS name, buffer-number, length AS
name ...
buffer-number specifies a direct-access file buffer (1,2,3, ... 15)
name defines a variable name for the first field

The FIELD statement is used to organize a direct file buffer so data can be
passed from BASIC to disk and disk to BASIC. Before fielding a buffer, you
must use an OPEN statement to assign that buffer to a particular disk file.
(The direct access mode , i.e., OPEN ' 'D", ... must be used.)

You may use the FIELD statement any number of times to "re-organize" a
file buffer. FIELDing a buffer does not clear the contents of the buffer; only
the means of accessing the buffer (the field names) are changed. Furthermore,
two or more field names can reference the same area of the buffer.

Examples

FIELD 1, 128 PS A$, 128 AS B$

This statement tells BASIC to assign two 128-byte buffers to the string
variables A$ and B$. If you now print A$ or B$, you will see the contents of
the buffer. Of course, this value would be meaningless unless you've
previously used GET to read a 256-byte record from disk.

Note: All data - both strings and numbers - must be placed into the buffer
in string form. There arc three pairs of functions (MK1$/CVI, MKS$/CVS,
and MKD$/CVD) for converting numbers to strings and strings to numbers.
See section B of this chapter.

FIELD 3, 16 AS NMS, 25 AB AU$, 10 AS CVS, 2 AS ST$,
7 1\b ZP$

The first 16 bytes of buffer 3 are assigned the buffer name NM$; the next 25
bytes, AD$; the next 10, CY$; the next 2, ST$; the next 7, ZP$.

1 39

GET
Directly Access a Record from Disk

GET buffer-number, record number
buffer-number specifies a direct access file buffer (1,2,3, .. . 15)
record number specifies which record to GET in the file; if omitted, the

current record will be read

This statement gets a data record from a disk file and places it in the specified
buffer. Before using GET, you must open the file and assign a buffer to it.

When BASIC encounters the GET statement, it reads the record number
from the file and places it into the buffer. lf you omit record number, it will
read the current record.

The current record is the record whose number is one greater than that of the
last record accessed. The first time you access a file via a particular buffer, the
current record is set to 1.

Examples

Gets record l into buffer 1.

-:,r:,
.: • •• .J

Gets record 25 onto buffer I.

140

-

-

-

-

-

INPUT#
Sequential Read from Disk

INPUT# buffer-number, name, name ...
buffer-number specifies a sequential input file buffer (1,2,3, ... 15)
name is the variable name to contain the data from the file

This statement inputs data from a disk file.

With INPUT#, data is input sequentially. That is, when the file is opened, a
pointer is set to the beginning of the file. The pointer advances each time data
is input. To start reading from the beginning of the file again, you must close
the file buffer and re-open it.

INPUT# doesn't care how the data was placed on the disk - whether a single
PRINT# statement put it there, or whether it required ten different PRINT#
statements. What matters to INPUT# is the position of the terminating
characters and the EOF marker.

When inputting data into a variable, BASIC ignores leading blanks. When
the first non-blank character is encountered, BASIC assumes it has
encountered the beginning of the data item.

The data item ends when a terminating character is encountered or when a
terminating condition occurs. The terminating characters vary, depending on
whether BASIC is inputting to a numeric or string variable.

Examples
INFi\F"f#j I r-:\, ['.

Sequentially inputs two numeric data items from disk and places them in A
and B. File-buffer #1 is used.

INPUT#4, A$, BS, CS

Sequentially input three string data items from disk and places them in A$,
B$, and C$. File-buffer #4 is used.

141

LINE INPUT#
Read Line of Text from Disk

LINE INPUT# buffer-number, name
buffer-number specifies a sequential input file buffer (1,2,3, ... 15)
name is the variable name to contain the string data

Similar to LINE INPUT from the keyboard, LINE INPUT# reads a " line" of
string data into name. LINE INPUT# is useful when you want to read an
ASCII-format BASIC program file as data, nr when you want to read in data
without following the usual restrictions regarding leading characters and
termimitors.

LINE INPUT# reads everything from the first character up to

• a carriage return character which is not preceded by a line feed character
• the end-of-file
• the 255th data character (the 255th character is included in the string)

Other characters encountered - quotes, commas, leading blanks,
<LF><EN>pairs - are included in the string.

Example
If the data on disk looks like

10 CLEPP 500 <X ' OD' >
20 0PIB "I", 1, "pp(X"." <' ('-p -:-,

then the statement

could be used repetitively to read each program line, one line at a time.

142

-

-

-

-

-

-

OPEN
Assign a Buffer to a File and Set Mode

OPEN mode, buffer-number, filespec, record-length
mode is a string expression or constant of which only the first character is

significant; this character specifies the mode in which the file is to be
opened: I for sequential input, 0 for sequential output, D for direct­
access input-output.

buffer-number specifies a buffer to be assigned the file specified by filespec
filespec defines a TRSDOS file specification
record-length = 0, 1,2 ... 255. If record-length is omitted or if a value of O is

used, the record length will be 256.

This statement makes it possible to access a file. Mode determines what kind
of access you'll have via the specified buffer. Buffer-number determines
which buffer will be assigned to the file. Filespec names the file to be
accessed. If filespec does not exist, then TRSDOS may or may not create it,
depending on the access mode.

When a file is open, it is referenced by the buffer-number which was assigned
to it. GET buffer-number, PUT buffer-number, PRINT# buffer-number,
INPUT# buffer-number, all reference the file which was opened via buffer­
number. The mode must be correct.

Once a buffer has been assigned to a file with the OPEN statement, that
buffer can't be used in another OPEN statement. You have to CLOSE it first.

Examples
OPEN "O", 1., "CI .. It::l\iTf.3/T):T"

Opens the file "CLIENTS/TXT" for sequential output. Buffer 1 will be used.
If the file does not exist, it will be created. If it already exists, then its previous
contents are lost.

OPEN "D", 2, "DATA/f?,AS. E,PECIAL."

Opens the file DAT A/BAS with password SPECIAL in the direct access
mode. Buffer number 2 is used. If DAT A/BAS does not exist, it will be
created on the first non write-protected drive.

OPEN "D", 5, "TEST /BAS", 64

Opens the file TEXT/BAS for direct access. Buffer number 5 is used. The
record length is 64. If this record length does not match the record-length
assigned to TEXT/BAS when the file was originally opened, an error will
occur.

14 3

PRINT#
Sequential Write to Disk File

PRINT# buffer-number, expression; ...
buffer-number specifies a sequential output file buffer (1,2,3, ... 15)
expression is the expression to be evaluated and written to disk
; is a delimiter placed between every two expressions to be printed to disk. A

comma(",") can also be used. The delimiter is not used if there is only
one expression to be written

This statement writes data sequentially to the specified file. When you first
open a file for sequential output, a pointer is set to the beginning of the file.
Thus the first PRINT# places data at the he ginning of the file. At the end of
each PRINT# operation the pointer advances, so values arc written in
sequence.

A PRINT# statement creates a disk image similar to what a PRINT to the
Display creates on the screen. Remember this, and you'll he ahle to set up
your PRINT# list correctly for access by one or more INPUT statements.

PRINT# does not compress the data before writing it tu disk . It writes an
ASCII-coded image of the data.

Examples

IfA = 123.45

will write a nine-byte character sequence onto disk:

where .. ' ,. indicates a blank.

The punctuation in the PRINT list is very important. Unquoted commas and
semicolons have the same effect as they do in regular PRINT tu Display
statements. For example, if A = 2300 and Il = 1.JOJ, then

PHil\iTH 1 •.• t ·, •! H

places the data on disk as

'2]00''''''''''1.303' <EN>

144

-

-

-

-

-

-

The comma between A and Bin the PRINT# list causes 10 extra spaces in the
disk file. Generally you wouldn't want to use up disk space this way, so you
should use semicolons instead of commas.

Files can be written in a carefully controlled format using PRINT# USING.
Or you can use this opt'ion to control how many characters of a value are
written to disk.

For example, suppose A$= .. LUDWIG", B$ = ··v AN'", and C$ =
''BEETHOVEN". Then the statement

PRI I\IT#l, UbINCi" ~. 1 .' °'\.11
; 1\-!,; p,j;; C:1;

would write the data in nickname form:

L ... \/,,HL:CT <C:hl>

(In this case, we didn't want to add any explicit delimiters.) Sec 2.C.ii.,
PRINT, for more information on the USING option.

145

PUT
Write a Direct Access Record to Disk

PUT buffer-number, record number
buffer-number specifies a direct access file buffer (1,2,3, ... 15}
record number specifies the record number of the file. If record number is

omitted, the current record number is used

This statement moves data from the huffer of a file into a specified place in the
file. Before putting data into a file, you must

• OPEN a file, which assigns a buffer and defines the access mode (which
must he D)

• FIELD the buffer, so you can
• place data into the buffer with LSET and RSET statements.

The first time you access a file via a particular buffer, the current record is set
equal to 1. (The current record is the record whose number is one greater than
the last record accessed.)

If the record number you PUT is higher than the end-of-file recorc.l number,
then record number become the new end-of-file record number.

Examples

Puts record 1 into buffer I .

Puts record 25 into buffer I.

146

-

-

-

-

-

-

Debug Statements

The debug statements allow you to isolate logical errors in your programs,
and to trap input/output errors so that your program can continue execution
in spite of the error.

For example:

100 STQ.P

interrupts program execution at the specified line. The Computer will
automatically return to the command mode to allow you to test the contents
of variables via immediate statements like:

PRINT X,Y,Z

147

CONT
Resume Execution of Program

CONT

When program execution has bt:cn stopped (by the BREAK key or hy a
STOP statemt:nt in the program). type CONT and P\Uii~;I to continue
execution at the point where the stop or break occurred. During such a break
or stop in execution, you may examine variable values (using PRINT) or
change thest: values. Tht:n type CONT and l=Uii#l;I and execution will
continue with the current variable values. CONT. when ust:d with STOP and
tht: BREAK key. is primarily a debugging tool.

NOTE: You cannot use CONT after EDITing your program lines or other­
wise changing your program. CONT is also invalid after execution has endt:d
normally.

See also STOP.

-

-

-
148

-

-

-

ERL
Get Line Number of Error

ERL

ERL returns the line number in which an error has occurred. This function is
primarily used inside an error-handling routine. If no error has occurred
when ERL is called, line number O is returned. Otherwise, ERL returns the
line number in which the error occurred. If the error occurred in the
command mode, 65535 (the largest number representable in two bytes) is
returned .

Examples
PR I NT [f~L.

Prints the line number of the error.

E~ === 1:::m ...
Stores the error's line number for future use.

Sample Program
1999 REM ERL PROGRAM
2000 CLEAR 100: ON ERROR GOTO 2125
2 0 10 INPUT"WHAT NAME ARF YOU LOOKING FOR";@$
2020 READ T$
?030 IF 0$=TS THEN PRINT TS" IS IN THE LIST" : GOTO 2060
204\i.:i GOTO :::020
:?l"'l::,(21 PRINT Gi$" IS NOT IN THE L:[:::tr.": HESTORE: GOTO 2 010
2 060 INPUT"lrJHAT :U-3 YO(.m Ft:i\/OFUTE Fr{UI f" iF"$
~-:-: l?.l70 F~Ef'.\D T$
)080 IF FS=TS THEN PRINT"YOU'RE IN LUCK--WE HAVE SOME.":

RESTORE : GOTO 2010
7:C'.1r-r!ZI GOTO 21i.l70
210!7.l F'RINT"~:,OF~f-N·····-·l,,IF DON'T H/,'.JE t,NY "F1;"t,": f-<LSTOf~E: GOTO :: ::i1.16G~
2110 DATA TOM, DICK, HARRY , JAMES, ROBERT, SUE, SALLY,

Cl7'.m:J. ... LE, M1-\HY
2 :l20 DAT A WATFRMEL..ON, PEACH , F'E/.>,R , OR/\NGE, APPLE, CHE!~F-(Y•i

TOMATO, AVOCADO
2 125 IF ERR<>4 THEN ON ERROR GOTO 0
2130 IF ERL.=2020 THEN RESUME 2050
2140 IF ERL=2070 THEN RESUME
2 150 ON ERROR GOTO 0

.-., i f7ii7f
.,;... -l. 't--.J':i_J

149

-

-

-

ERR
Get Error Code

ERR

ERR is similar to ERL, except that ERR returns the code of the error rather
than the line in which the error occurred. ERR is normally used inside an
error-handling routine accessed by ON ERROR GOTO. See the section on
error codes in the Appendix.

Examples

IF ERR= 7 THEN 1000 ELSE 2000

If the error is an Out of Memory error (code 7) the program branches to line
1000; if it is any other error, control will instead go to line 2000.

Sample Program

2160 ON ERROR GOTO 2220
:21. 70 F-<F.:.A:O A
21 El(Z1 PRINT l'1
219(2'I GOTO :~~ :t. 70
??~~ PRINT 0 DATA HAS BEEN READ IN"
:;:~210 END
2220 IF ERR= 4 THEN RESUME 2200
??30 ON ERROR GOTO 0
...... -•~~ · .•' Df-1 T /\ L~, 2 , ~7.J i =· , CJ , :? ~ 2, ::3 1 , r , :t ~;, 1

This program "traps" the Out of Data error, since 4 is the code for that error .

151

ERROR
Simulate Error

ERROR code
code is a numeric expression in the range [0,255}

ERROR lets you simulate a specified error during program execution. The
major use of this statement is for testing an ON ERROR GOTO routine.
When the ERROR code statement is encountered, the Computer will
proceed exactly as if that error had occurred. Refer to the Appendix for a

listing of error codes and their meanings.

Example

When the program reaches this line, a Next Without For error (code 1) will
"occur", and the Computer will print a message to this effect.

Sample Program

2:?<'1-0 I i\iF'UT
-::- ·::·'',Fl EnF~UF: r·,i

When you input one of the error code numbers, that error will be simulated in
line 2250.

1 52

-

-

-

-

-

-

ON ERROR GOTO
Set Up Error-trapping Routine

ON ERROR GOTO line number

When the Computer encounters any kind of error in your program, it
normally breaks out of execution and prints an error message. With ON
ERROR GOTO, you can set up an error-trapping routine which will allow
your program to " recover" from an error and continue, without any break in
execution. Normally you have a particular type of error in mind when you use
the ON ERROR GOTO statement.

For example , suppose your program performs some division operations and
you have not ruled out the possibility of division by zero. You might want to
write a wutine to handle a division-by-zero error, and then use ON ERROR
GOTO to branch to that routine when such an error occurs.

The ON ERROR GOTO must be executed before the error occurs or it will
have no effect.

The ON ERROR GOTO statement can be disabled by executing the
statement, ON ERROR GOTO 0.

If you use this inside an error-trapping routine, BASIC will handle the
current error normally.

The error handling routine must be terminated by a RESUME statement.
See RESUME.

Examples
ON ERROR GOTO 1500

If an error occurs in your program anywhere after this line, control will
suddenly shift to line 1500.

Sample Program
Fo,; the use ofONERRORGOTO in a program, see the sample programs for
ERL and ERR.

1 53

RESUME, RESUME NEXT
Terminate Error-Trapping Routine

RESUME line number
line number is optional.

RESUME NEXT

R ESUME terminates an error-handling routine by specifying where normal
execution is to resume. Place a RESUME statement at the end of an error­
trapping routine. That way later errors can also be trapped .

RESUME without an argument and RESUME O bo th cause the Computer to
return to the statement in which the error occurred.

RESUME followed by a line number causes the Computer to branch to the
specified line number.

RESUME NE XT causes the Computer to branch to the statement following
the point at which the error occurred.

Examples
R ESUME

If an error occurs, when program execution reaches the line above, control
will be transferred to the line in which the error occurred.

R ESUME 10

If an error occurs, control will be transferred to line 10 after the problem has
been fixed .

Sample Program
For the use of RESUME in a program, see the sample programs for E RL and
ERR.

154

-

-

-

-

-

-

STOP
Interrupt Execution of Program

STOP

STOP interrupts the execution of your program and prints the words
BREAK IN followed by the number of the line that contains the STOP.
STOP is primarily a debugging aid. During the break in execution, you can
examine variables or change their values.

The CONT command is used to resume execution at the point where it was
halted. But if the program itself is altered during the break, CONT can't be
used.

Sample Program

22biZJ X "" ~~ND (l C1)
:::::::~lft.1 UT()P
:2~?F~0 (:tOTO :?::?6l1

A random number between 1 and 10 will be assigned to X and program
execution will halt at line 2270. You can now examine the value of X with
PRINT X or? X. Type CONT to start the cycle again.

155

TRON, TROFF
Turn Trace Function On, Off

TRON

TROFF

TRON turns on a trace function that lets you follow program flow for
debugging and for analysis of the execution of the program. Each time the
program advances to a new program line, that line number will be displayed
inside a pair of brackets.

Sample Program

;:::::;:c;;v1 T PO!\!
'/ .. '.~ l/11/.1 X ::= :~< -~:- :3 .: l 1+ 1. 5()
.?::',J.lli TPUFF

might be helpful in assuring you that line 2300 is actually being executed,
since each time it is executed [2300] will be printed on the Display. (We
assume the program doesn't jump directly to line 2300 without passing
through line 2290, which would execute the assignment statement without
turning the trace on.)

After a program is debugged, the TRON and TROFF statements can be
removed.

156

-

-

-

-

-
Functions

-
157

-

-

-

Computational Functions

Computational functions are internal to BASIC, i.e. , they are not concerned
with input/output. They perform some action on their argument or
arguments and return a result.

There are numeric and string computational functions.

ASC

is a numeric computational function because it returns a numeric result.

OCT$

is a string computational function because it returns a string result.

159

-

- Numeric

-
161

ABS
Compute Absolute Value

ABS (number)
number is any numeric expression

ABS returns the absolute value of the argument. i.e .. the magnitude of the
number without respect to its sign. ABS(x)= x for x greater than or equal to
zero. and ABS(x)= -x for x less than zero.

Examples

The absolute value ofY is assigned to X.

TOO SMALL is printed only if the absolute value of Xis less than the
indicated number.

Sample Program

ii!)(/1 J:NF'UT "l•JH(~T"'f::) ·rHE: TFMPE:RATUF<E OUTE;IDE (DF:•~1m:E:f:; F)"; TEl"IP
1:1.!LI IF TC:l"IP < ltJ Tl·-iE:l'--1 F'l?Il'lT "TH/;T .' H;' 1'1Bl'J(TFMP">

"BELOW ZERO' BRR'": END
l)f/1 TF TEMP::: G1 THF:N PHII\IT "ZE!'<O DEJ::ir<ET~=_; 1 MITE COl .. :0 1

": l:':.l\l:U
:I :?,Vl F'HINT TFMF) II D[(, PF:ES /\UO')[ZF::RU 7 BAL.MY! II: END

162

-

-

-

- ASC
Get ASCII Code

ASC (string)
string is a string expression. If string is null, an Illegal Function Call will

occur.

ASC returns the ASCII code of the first character of the string. The value is
returned as a decimal number.

Examples
PF:Hrr ,~uc< Hf\")

PHii\!T ,\f:\C("f~U"i

Both lines will print 65, the ASCII code for "A".

- Prints the ASCII code of the last character of T$.

-

Sample Programming

Refer to the ASCII code table in the Appendix. Note that the ASCII code for a
lower-case letter is equal to that letter's upper case code plus 32. So ASC
can be used to convert lower-case to upper case, simply by subtracting 32
from ASC(x). For instance:

J.L1-Vi H,n::)uT uL.ETT1::::F~ (;:i•···z)"; X$

150 IF X$ >= "a" AND X$ <= "z" THEN X$ = CHR$(ASC(XS) -32)
l(:J{l.l PPINT :~$

ASC can be used to make sure that a program is receiving the proper input.
Suppose you've written a program that requires the user to input numerals
0-9. To make sure that only those characters are input, and exclude all other
characters, vou can insert the following routine.

170 INPUT " ENTER A NUMBER (0-9)"; NS
180 IF ASC(N$) < 48 OR ASC(NS) > 57 THEN 170
185 IF LEN(N$) > 1 THEN 170

163

ATN
Compute Arctangent

A TN (number)
number is a numeric expression

A 1N returns the angle whose tangent is number. The angle will be in
radians ; to convert to degrees, multiply ATN(X) by 57.29578.

Examples

l :::· 1\ TN (Y / 3)

Assigns the value of the arctangent of Y /3 to X.

PRINT ATN(1. 00?~)

Prints the indicated value.

!:: ··7 -·;
·' (,,,, .

n == N -r· f\ ·r N ,: ;::: r;1 -~,· F :.:: / , · 1)

Assigns the indicated value to R.

Sample Program
190 I NPUT "TANGENT"; T
2 00 PRINT " ANGLE JS" ~TN(T)

164

-

-

-

-

-

-

CDBL
Convert to Double-Precision

CDBL (number)
where number is any numeric expression.

Returns a double-precision representation of the argument. The value
returned will contain 17 digits. but only the digits contained in the argument
will be significant.

CDBL may be useful when you want to force an operation to be done in
double-precision. even though the operands are single precision or even
integers. For example. CDBL (1%)/J% will return a fraction with 17 digits of
precision.

Examples

Y# = CDBL (N * 3) + M

The operations on the right are forced double-precision.

Sample Program
210 FOR I = 1 TO 25
220 PRINT liCDBL(I),
23(2) NEXT I

Prints the elements of the harmonic series L 1/2. 1/3 1/25 in double­
precision.

165

CINT
Converts to Integer Representation

CINT (number)
number is a numeric expression such that - 32768 <= number<32768.

CINT returns the largest integer not greater than the argument. For example ,
CINT(l.5) returns 1; CINT(- 1.5) retums - 2. The result is a two-hyte integer.

Examples
PR INT rI NT (lS .0075)

Prints the indicated value.

K = CINT(X#) + CINT(Y#>

The addition will involve only integer arithmetic, which is much faster than
double-precision.

Sample Program
240 INPUT uENTER A POSITIVE DECIMAL NUMBER
(LIKE DDDD.DDDD)h; N
250 PRINT »INTEGER PORTION IS"; CINT(N)

166

-

-

-

- cos
Compute Cosine

COS (number)
number is a numeric expression.

COS returns the cosine of the angle number. The angle must be given in
radians. When number is in degrees, use COS(number • .01745329).

Examples
v =:: cor:; < :x. i

Assigns the value of COS(X) to Y.

Y = COS(X * .01745329)

If Xis an angle in degrees, the above line will give its cosine.

- PRINT COf3(':i .. i3) --- COS(B'.) * .. t.~:2)

-

Prints the difference of the two cosines.

fr::-: ,~, Ci l -~ < (C0':3 (i\)) I\ l '.:i)

Computes the indicated cosine and stores it in G2.

Sample Program
:?60 H~PI._JT "ANGLE: IN R/\D I />,NS" ; f'\
270 PRINT "COSINE IS" COSCA)

16 /

CSNG
Convert to Single-Precision

CSNG (number)
number is a numeric expression.

CSNG returns a single-precision representation of the argument. When the
argument is a double-precision value, it is returned as six significant digits
with "4/5" rounding in the least significant digit. For instance,
CSN G(. 666666666666666 7) returns . 66666 7; CSN G(. 3333333333333333)
returns .333333.

Examples
F C ::: CUNC:i (TMfl:)

Assigns the value CSNG (TM#) to FC.

PRINT rsNG (. 1453885509)

Prints a single-precision value.

Performs the indicated computation and stores it in R.

Sample Program
280 PI#= I J ~141 59265358979
290 B# = 18.0000 00795
3 00 PRINT CSNGCPI# * B#l

This program prints a single-precision value after the douhle-precision
multiplication.

168

-

-

-

-

-

EXP
Compute Natural Antilog

EXP (number)
number is a numeric expression.

Returns the natural exponential of number, that is, e"umber. This is the inverse
of the LOG function; therefore, X = EXP(LOG(X)) .

Examples
H = EXP(A)

Assigns the value ofEXP(A) to H.

PR H,IT EXP (···2)

Prints the value .135335.

E = (Gl + G2 - .07) * EXP(.055 * IGl + G2))

Performs the required calculation and stores it in E.

Sample Program
3 10 I NPUT "NUMBER"; N
320 PR INT "E RAISED TO THE N POWER IS" EXPIN)

16 9

FIX
Return Truncated Value

FIX (number)
number is a numeric expression.

FIX returns a truncated representation of the argument. All digits to the right
of the decimal point are simply chopped off, so the resultant value is an
integer. For non-negative X. FIX(X) = INT(X). For negative values ofX,
FIX(X) = INT(X) + 1.

Examples
y· :::: F~i :~(X)

The truncated number is put in Y.

Pf":(I f\l T i: · 1 X (:::: • 2)

Prints the value 2.

PH INT r- IX(·· ·:? "2)
Prints the value -2.

Sample Program

330 INPUT "NUMBER"; A#
340 Y# = ABSCA# - FIX(A#))
350 PRINT "FRACTIONAL PORTION IS" Y#

This program splits any number into its integer and fractional parts.

170

-

-

-

-

-

INSTR
Search for Specified String

INSTR (position, string1, string2)
position specifies the position in string1 where the search is to begin.

Position is optional ; if it is not supplied, search automatically begins at the
first character in string 1. (Position 1 is the first character in string 1.)

string 1 is the string to be searched.
string2 is the substring you want to search for.

This function lets you search through a string to see if it contains another
string. If it does, INSTR returns the starting position of the substring in the
target string; otherwise. zero is returned. Note that the entire substring must
be contained in the search string, or zero is returned. Also, note that INSTR
o nly finds the first occurrence of a substring, starting at the position you
specify.

Examples

In these examples. A$= "LINCOLN":

INSTR(A$, "INC")

returns a value of 2.

INt=rrn (l\$, "1.2")

returns 0.

INSTR(A$, " LINCOLNABRAHAM")

returns 0. For a slightly diffe rent use of INSTR, look at
INSTR (3, 11 l 23:2123 " , " 12 11

)

which returns 5.

1 71

Sample Program
The program below uses INSTR to search through the addresses contained in
the program's DAT A lines. It counts the number of addresses with a specified
county zip code (761--) and returns that number. The zip code is preceded by
an asterisk to distinguish it from the other numeric data found in the address.

:360 RESTOliE
370 COUNTER= 0
380 ON ERROR GOTO 410
390 READ ADDRESS$
400 IF INSTR(ADDRESS$, "*7 61") <> 0 THEN COUNTER= COUNTER+ 1

ELSE 390
4(ZJ5 GOTO 39C~
Lt10 PRINT "NUMBER OF' TARRANT COUNTY, TX ADDRESt:\ES ISu COUNTER:

END
4 20 DATA "5950 GORHAM DRIVE, BURLESON, TX *76148"
430 DATA "71 FIRSTFIELD ROAD, GAITHERSBURG, MD *20760"
440 DATA "1000 TWO TANDY CENTER, FORTH WORTH, TX *76102"
450 DATA N16633 SOUTH CENTRAL EXPRESSWAY, RICHARDSON, TX *75080"

172

-

-

-

INT
Convert to Integer Value

INT(number)
number is any numeric expression.

INT returns an integer representation of the argument, using the largest
whole number that is not greater than the argument. The result has the same
precision as the argum~nt. The argument is not limited to the range - 32768 to
32767.

Examples
A =: I NT (X)

Gets the integer value of X and stores it in A.

PRINT INT(2.5)

- Prints the value 2.

-

PRINT INT (·-2.5)

Prints -3.

Sample Program:
460 INPUT X#
470 IF X# < 0 THEN GOTO 460
480 A= INT((X# * 100) + .5) / 100
490 PRINT A

If you type in a positive number with a fraction like 25. 733720, this program
will round it off to two decimal places and print it.

173

LEN
Get Length of String

LEN (string)
string is a non-null string expression.

LEN returns the characte r length of the specified string.

Examples
X ~ LEN (iE'.J\ITFJ-JCE$)

Gets the length of SENTENCE$ and stores it in X.

F1 RINT LFI\I(" CAMf:::FiIDCiE::" :, + L..EN("P.E:RhELF:Y")

Prints the value 17.

Sample Program

500 A$ = 11
"

511Zl B$ = "TOM"
520 PRINT A$, 8$, 8$ + 8$
530 PRINT LEN<A$) , LENCBS), LEN(B$ + BS)

When this short program is run. the following will be printed on the display:

174

TOM
3

T OMTOM
6

-

-

- LOG
Compute Natural Logarithm

LOG (number)
number is a numeric expression.

LOG returns the natural logarithm of the argument. This is the inverse of the
EXP function, so X = LOG(EXP(X)). To find the logarithm of a number to
another base B, use the formula LOG B(X) = LOG E(X)/LOG E(B). For
example, LOG(32767)/LOG(2) returns the logarithm to base 2 of 32767.

Examples
e. ::: LOG(A)

Computes the value of LOG(A) and stores it in B .

PRINT LOGC3 .14159)

- Prints the value 1.14473.

-

Z = 10 * LOG(P2/Pl)

Performs the indicated calculation and assigns it to Z.

This program demonstrates the use of LOG. It utilizes a formula taken from
space communications research.

Sample Program
540 INPUT "DISTANCE SIGNAL MUST TRAVEL (MILES)"; D
550 INPUT "SIGNAL FREQUENCY (G IGAHERTZ)" ; F
560 L = 96.58 + (20 * LOG(F)) + <2 ~ * LOG<D >>
570 PRINT "SIGNAL STRENGTH LOSS IN FREE SPACE IS" L "DECIBELS."

175

RND
Generate Pseudorandom Number

AND (number)
number is a numeric expression such that

0 . = number ,32768.

RND produces a pseudorandom number using the current ·•seed" number.
The seed is generated internally and is not accessible to the user. RND may he
used to produce random numbers between O and 1. or random integers
greater than 0, depending on the argument.

RND(O) returns a single-precision value between O and 1. RND(X), where X
is an interger between 1 and 32768. returns an integer between 1 and X. For
example. RND(55) returns a pseudorandom integer between 1 and 55.
RND(55.5) returns a number in the same range, because RND uses the
integer value of the argument.

Examples
r\ :::, m-mo: :?)

A is given a value of 1 or 2.

A ~= F: r-.J D (Z)

Returns a random integer between 1 and Zand assigns it to A.

Prints a decimal fraction between O and 1.

Sample Program

580 F OR I - 1 TO 100
590 PRI NT RND(10);
6 C.'.)12) I\IF X T l

This prints 100 pseudorandom numhers between 1 and 10.

176

-

-

-

-

-

-

SGN
Get Sign

SGN (number)
number is a numeric expression.

This is the "sign" function. It returns -1 if its argument is a negative number,
0 if its argument is zero, and 1 if its argument is a positive number.

Examples
Y :::: SGN (A ·!!- B)

The function determines what the sign of the expression A * B is, and passes
the appropriate number (-1, 0, 1) to Y.

PRINT !:-:;GN (1'I)

Prints the appropriate number on the Display.

Sample Program

6U2'J INPUT "ENTER A NUMBER";
620 ON SGN (X) + 2 GOTO 63121,
630 PRINT "NEGATIVE": END
640 PRINT II ZERO" : END
65121 PRINT "POSITIVE": END

X
64121, 650

177

SIN
Compute Sine

SIN (number)
number is a numeric expression.

SIN returns the sine of the argument, which must be in radians. To obtain the
sine of X when Xis in degrees, use SIN(X • .0174533).

Examples

f,.J :: ':.,IN (MX)

Assigns the value of SIN(MX) to W.

PF~I 1'T b li'-1(7 .'-?b}

Prints the value .994385.

E = (A* A) * (SIN tD)/2 l

Perlorms the indicated calculation and stores it in E .

Sample Program

660 INPUT «ANGLE IN DEGREES"; A
670 PRINT "SINE IS" SIN<A * .0174533)

178

-

-

-

-

-

-

SQR
Compute Square Root

SOR (number)
number is a non-negative numeric expression.

SQR returns the square root of its argument.

Examples

Performs the required calculation and stores it in Y.

PRINT GG!R(:1.5':'i. 7)

Prints the value 12.478.

Sample Program

680 INPUT "TOTAL RESISTANCE (OHMS)"; R
690 INPUT "TOTAL REACTANCE (OHMS)"; X
700 Z = S@R(CR * R) + (X * X)l
710 PRINT "TOTAL IMPEDANCE <OHMS) IS" Z

This program computes the total impedance for series circuits.

179

TAN
Compute Tangent

TAN (number)
number is a numeric expression.

TAN returns the tangent of the argument. The argument must be in radians.
To obtain the tangent of X when Xis in degrees, use TAN(X * .01745329).

Examples
L :::: T ?\N (M)

Assigns the value ofTAN(M) to L.

PF~I NT Ti\N (7 . 9t~,)

Prints the value - 9.39702.

Z = (TAN(L2 - Ll)) /2

Performs the indicated calculation and stores the result in Z.

Sample Program

180

720 I NPUT " ANGLE IN DEGREES "; ANGLE
730 1 = 1AN(ANGLE * . 01 745329)
7'+1.;1 PPIN'f "T,';!\I Ii=,;" T

-

-

-

- VAL
Evaluate String

VAL (string)
string is a string expression.

VAL is the inverse of the STR$ function; it returns the number represented
by the characters in a string argument. This number may be integer, single
precision, or double precision depending on the range of values and the rules
used for typing all constants.

For example, if A$= " 12" and B$ = "34" then V AL(A$ + " ." + B$) returns
the value 12.34 and V AL(A$ + "E" + B$) returns the value 12E34, that is, 12
"' 10t34.

VAL terminates its evaluation on the first character which has no meaning in
a numeric term - e.g. , Z , ? , etc. The current value at termination is used.

- If the string is non-numeric or null, VAL returns a zero.

-

Examples
PFU NT './t,L ("HWJ DOL.L.f\F:H")

prints 100.

prints l.234E+08o

p, :.::: './~\l... (II =~ II °"!- !I * 11 + 11 :? ff)

S
The value 3 is assiqned to ~ o

am.pie Program

REM WHAT SIDE OF THE STREET?

7 5 0 REM WHAT SIDE OF THE STREET?
760 REM NORTH IS EVEN; SOUTH I S ODD
7 70 LINE INPUT "ENTER THE ADDRESS (NUMBER AND STREET) "; AD$
780 C = INT(VALIADSl /2) * 2
790 IF C = VAL(ADSJ THEN PRINT "NORTH S I DE ": GOTO 770
8 00 PRINT "SOUTH S IDE": GOTO 770

181

-

-

-

-

- String

-
183

CHR$
Get Character for ASCII or Control Code

CHA$ (number)
number is a numeric expression,

number= 0, 1,2 ,255

CHR$ is the inverse of the ASC function. It returns a one-character string ;
this character has the ASCII , control, or graphics code number specified by
the argument of the function.

Examples:

The function CHR$ converts the number Tinto its ASCII character
equivalent and puts the character into P$.

PRINT Cf·IF?',l; (:.-, '::))

Prints a # on the Displa_v o

Puts the Display into its black-on-white mode (use CHR$ (2 5) to return to
normal).

A$= A$+ CHRS(I)

The character whose ASCII code is I is added to the end of A$.

Sample Program
Using CHR$. you can <1ssign quotation marks to strings. even though they are
ordinarily used as string-delimiters. Since the ASCII code for quotations is
34, A$ = CHR$(34) assigns the value" to 34.

700 A$ = CHR$ (34)
7 :I V! PF~ I NT " HE: H,!\ ID , " ,_: t\ 'f::- '.: " HF:l .. L.O,. " ; {1j;

When this is RUN , the following line will be printed on the Display:

HE SfdI: , " HE L.L. O."

184

-

-

-

- DATE$

-

-

Get Today's Date

DATE$

This function lets you display today's date and use it in a program.

The operator sets the date initially when TRSDOS is started up. When you
request the date, BASIC will display it in this fashion:

S ATAPR281979118 45

which means Saturday, April 28 , 1979, 118th day of the year, 4th month of the
year, 5th day of the week (Monday is the 0th day of the week).

Example
PRINT DATE$

which returns

Sample Program

-,.-,
(.,:

1090 PRINT "Invent orv Check:"
1100 IF DATE$ = "THU,JAl'J311.98(t.Wr31 13" THF:.N PRINT "Today i'.E.

the l ast dav of January 1980. Time to Perform monthlv
i fl\/(? r, t t) r-····· 11 II : El\l[>

1110 A$= LEFTS(DATES, 8): BS= RIGHTS(AS, 2)
11 :21ZJ B == VAL< BS)
]1 3~ PRINT 31 - 8" days until inventory time. "

185

HEX$
Compute Hexadecimal V aloe

HEX$ (number)
number is a numeric expression,

- 32768 '- number 32768

HEX$ returns a string which represents the hexadecimal value of the
argument. The value returned is like any other string - it cannot be used in a
number expression. That is, you cannot add hex strings. You can concatenate
them, though .

Examples:
PRINT HEX $(30l , HEX $(50l , HEX $(90)
prints the following strings:

j E ···.<·· :,
· •..1: ..

Vt• " ' H l~:X $- (X /ti:;)

Y$ is the hexadecimal string representing the integer quotient X/16.

Sample Program

720 INPUT "DECIMAL VALUE"; DEC
730 PRINT "HEXADECI MAL VALUE IS " HEXS<DEC >

186

-

-

-

-

-

-

LEFT$
Get Left Portion of String

LEFT$ (string, number)
string is a string expresson, string null string
number is a numeric expression, LEN(string) = number

LEFT$ returns the first number characters of string. If LEN(string)
number, the entire string is returned.

Examples:

PRINT LEFTSC"BATTLESHIPS", 6)

Prints the left six characters of BA TILESHIPS, namely, BA TILE.

PRINT LEFTS("BIG FIERCE DOG", 20)

Since BIG FIERCE DOG is less than 20 characters long, the whole phrase is
printed.

PHRASE$= LEFTSCMS, 12)

Puts the first 12 characters of M$ into PHRASE$.

PRINT LEFTS("ALPHA" + "BETA" + " GAMMA", 8)

Prints ALPHABET.

Sample Program

7 l;(.'.1 ,!.\$ '"' 11 TI MO THY H

7 50 8$ = LEFT$(A$, 3)
7 b!Zl Pl=< I NT P,$; " ·--·--THAT'':~; GHOF-<.T FOR 11

; A$

When this is run, the following will be printed:

TIM--THAT 'S SHORT FOR TIMOTHY

1 87

MID$
Get Substring

MID$ (string, position, length)
string is a string expression
position is the position where the substring begins in string
length is the number of characters in the substring (this parameter is

optional)

MID$ returns a substring of string. The substring begins at position in string
and is length characters longs.

If length is omitted, the entire string beginning at position wi:11 be returned .

Examples
If A$= "WEATHERFORD'' then

PRINT MID$(A$, 3, 2)

prints AT.

F$ = MID$(A$, 3)

puts A THERFORD into F$.

Sample Program.

2 00 I NPUT " AREA CODE AND NUMBER (NNN-NNN- NNNN) "; PH$
21 0 EX$= MID$CPH$, S, 3)
220 PRINT "NUMBER IS IN THE" EX$ " EXCHANGE. "

The first three digits of a local phone number are sometimes called the
exchange of the number. This program looks at a complete phone numhcr
(area code, exchange, lust four digits) and picks out the exchange of that
number.

-

-

-
188

-

-

-

OCT$
Compute Octal Value

OCT$(number)
number is a numeric expression.

OCT$ returns a string which represents the octal value of the argument. The
value. returned is like any other string - it cannot be used in a numeric
expression

Examples:
PRINT OCT$(30), OCT$(50), OCTS(90)

prints the following strings:

36 .6:.?

Y$::: OCT '.l,(X/H'-~)

Y$ is a string representation of the integer quotient X/84 to base 8.

Sample Program

830 INPUT "DECIMAL VALUE"; DEC
840 PRINT "OCTAL VALUE IS" OCTS(DEC)

189

RIGHT$
Get Right Portion of String

RIGHT$ (string, number)
string is a string expression. string not equal to null string
number is a numeric express.

RIGHT$ returns the last number characters of string. If LEN(string) is less
than or equal to number, the entire string is returned.

Examples:

PRINT RIGHTS("WATERMELON", 5)

Prints the five right characters of WATERMELON, namely. MELON.

Since MILKY WAY is less than 25 characters long. the whole phrase is
printed.

Puts the last five characters of ADDRESS$ into ZIP$.

Prints a single··! ...

Sample Program
850 RESTORE: ON ERROR GOTO 880
860 READ COMPANY$
870 PRINT RIGHT$ (COMPANYS, 2),: GOTO 860
UB(ZI END

8 90 DATA " BECHMAN LUMBER COMPANY, SEATTLE , WA"
i~_·; r_ .. ,, f,i'I. J".) /~ ·1·· 1·-,• " r·· ···· I" ·· 1·· ····· ·· I ·

"" , _d) "U -~ I U '-1 '31:'.:. I-JE:f~ UE f~\/ I CE:, HF·UOl·<!. .. Yi\l, NV "
S' 10. Dt\Tt,, "HAMMOI\ID I'1 ANUF~'ICTtmING CO MF'1'.\~,IY, 1-!I\MlvlOND, IN"

This program prints the name of the state in which each company is located.

190

-

-

-

-

-

-

SPACE$
Return String of Spaces

SPACE$ (length)
length is a numeric expression,

0 = length 256.

SPACE$ returns a string of spaces. The number of spaces is determined by
the argument.

Examples:

PRINT " DESCRI P T I ON" E\PACE$,(Lf) "TYPE" '.:\F'ACE:.$(9) "Oi...Jt,NTITY"

Prints DESCRIPTION followed by four spaces followed by TYPE followed
by nine spaces followed by QUANTITY.

Puts a string of fourteen spaces into A$.

SP':t, ==== E,PAC[$(N)

Puts a string of N spaces into SP$.

Sample Program
920 PRINT "Here "
930 PRINT SPACE$(13) "is"
940 PR I NT SPACESC26> "an"
9'3 0 PH I !\IT (:,P(i, CE<!; (;39 11 ,'2 ::{,:ilTI p ·1 s"::"

960 PRINT S PACE$(52 "of"
970 PR I NT SPACE$(65 "SPACES"

19 1

STR$
Convert to String Representation

STR$(number)
number is a numeric expression.

STR$ converts its argument to a string. For example, if X = 58.5, then
STR$(X) equals the string " 58.5". Notice that a leading blank is inserted
before 58.5 to allow for the sign of X. While arithmetic operations may be
performed on X, only string functions and operations may be performed on
the string" 58.5".

Examples:

Converts the number X into a string and stores it in S$.

T$ = BTRS(A * 18l

Converts the number A* 18 into a string and stores it in T$.

Sample Program
980 CL.EAR 21ZHZl
990 CLS: LINE INPUT "TO APPLY FOR VOTER REGISTRATION,

TYPE YOUR FULL.. NAME. "; NM$
1000 INPUT "AND WHAT'S YOUR AGE"; AGE
1010 IF AGE< 18 THEN PRINT "SORRY, WE CAN 1 T REGISTER YOU.

YOU MUST BE 18.":
END

1020 REG$= NM$+ STRSCAGE) + STRSCRND(10000)): CLS
1030 PRINT "NAME - AGE - VOTER REGISTRATION NUMBER»:

PRINT liEG$

In the above program, the variable AGE must first be tested as a numeric
value and later stored as pa rt of a string. STR$ is used to accomplish the latter
function, not only for AGE but for RND as well.

192

-

-

-

- STRING$
Return String of Characters

STRING$ (length, character)
length is a numeric expression,

number = 0, 1,2, ... ,255 O = length 256
character is a string expression or an ASCII code.

STRING$ returns a string of characters. How many characters are returned
depends on STR[NG$'s first argument; what characters they are depends on
its second argument. For example, STRTNG$(30, 65) returns a string of thirty
"A"s. STRING$(30,20) returns a string of30 blanks, since 20 is the code for a
blank character.

STRING$ is useful for creating graphs, tables, and so on.

Examples:
B$::: ~>TR I NG$ (25, " X")

• Puts a string of 25 "X''s into B$.

-

PRINT STR INGS(50 , 10)

10 is ASCIJ code for a line feed, so the line above will print 50 blank lines on
the Display.

Sample Program

1 0Lt0 CLEAR 3!Zl0
1050 INPUT "TYPE IN THREE NUMBERS BETWEEN 33 AND 159 CN1, N2
, N3)"; Nl, N2 , N3
1060 CLS: FOR I= 1 TO 4: PRINT STRING$C 20, N1): NEXT I
1070 FOR J = 1 TO 2: PRINT STRING$(40, N2): NEXT J
1080 PRINT STR ING$ (8!ZI, N3)

193

TIME$
Get the Time

TIME$

This function lets you use the time in a program.

The operator sets the time initially when TRSDOS is started up. When you

request the time, TIME $ will supply it using this format:

which means 14 hours, 47 minutes, and 18seconds (24-hourclock) or2:47:18

P.M.

Example

TI ME+

When this line is reached in your program, the current time is stored in A$.

Sample Program

1140 IF LEFTS(TIME$, 5) = "10.15" THEN PRINT "Time i s 10:15
A.M. --time to Pi ck UP the mail.": END
1150 GOTO 1140

194

-

•

-

-

-

-

Input/Output Functions
The input/output functions are concerned with the transfer of data from the
CPU to peripheral devices, and from peripheral devices to the CPU. They
also return information which indicates a peripheral's state of readiness.

Model II input/output functions are dependent on TRSDOS input/output
drivers.

195

-

- Keyboard

-
197

INKEY$
Get Keyboard Character

INKEY$

Returns a one-character string from the keyboard without the necessity of
having to press14:0a;1If no key is pressed, a null string (length zero) is
returned. Characters typed to INKEY$ are not echoed to the Display.

INKEY$ is invariably put inside some sort of loop. Otherwise program
execution would pass through the line containing INKEY$ before a key could
be presse'd.

Example

When put into a loop, the above program fragment will get a key from the
keyboard and store it in A$. If the line above is used by itself, when control
reaches it and no key is being pressed, a null string("") will be stored in A$.

Sample Program
1200 CL.~;'.,
1210 PRINT@ 5 40 , INKEVs ; ·
1:?2(,; (~iOTO 1. 2 10

When you run this program, the screen will remain blank (except for the
cursor) until you strike a key. The last key that you strike will remain on the
Display until you press another one . Whenever you fail to hit a key while this
program is executing, a null string, i.e. , nothing, is printed at 540.

-

-

-198

- INPUT$
Input a Character String

INPUT$ (length)
length is a numeric expression.

This function allows a program to input a specified number of keyboard
characters. As soon as the last required character is typed, execution
continues. (You don't have to press ENTER to signify end-of-line.) The
characters you type will not be displayed on the screen.

Any character you type will be accepted (except BREAK).

Examples

A string of 5 characters must be input before BASIC will proceed to the next
- line of the program.

-

Sample Program
This program shows how you might use INPUT$ to have an operator input a
password to access a protected file. By using INPUT$, the operator can type
in the password without anyone seeing it on the Video Display. (To see the
full file specification, Run the program, then type:

PRINTF$.

110 LINE INPUT "TYPE IN THE FILENAME/EXT"; F$
120 PRINT "TYPE IN THE PASSWORD -- MUST TYPE 8 CHARACTERS: ";
130 P$ = INPUT$(8)
140 F$ = F$ +" . "+PS

199

-

- Video Display

- 201

POS
Returns Cursor Position

POS (dummy)
dummy is any numeric expression.

POS returns a number from l to 80 indicating the current cursor position on
the Display.

Examples
PRINT T~B(4~l POSt0)

The PRINTT AB statement moves the cursor to position 40. Since the cursor
is at 40, POS(0) returns the value 40, and 40 is printed on the Display.
(However, since a blank is inserted before the "4" to accommodate the sign,
the "4" is actually at position 41.) The "0" in POS(0) is the dummy argument.

Sample Program
1 230 F' rn NT " THET;E II TAH (POf::\ ((li) + :',) " l-W F:Db " ;
12::52 PF~ HJT T r-\U ,: Poi::; c v.J) + ·:c.) ",•\F{F: " Tt\E, (1::;0;3 ,: Ql; + :::i , 11 i:::1..,n::1\11....v 11

;

1240 PRINT TAB<POS(0) + 5) "SPACED"

When this program is RUN, you should get this output:

t,F[F'v'Fhl! . /

202

-

-

-

ROW
Get Row Position of Cursor

ROW(dummy}
dummy is a dummy argument.

The ROW function finds the row at which the cursor is currently located, and
returns that row-number. The 24 rows are numbered 0-23.

Examples

X = ROW (Y)

The row-number of the cursor's position at the time this line is encountered is
assigned to X.

PRINT ROW(IZl)

- T he row-number is printed on the Display.

-

Sample Program
When a key is typed, the program below will print it, find its Display
row-number and column-number, print this information, find its ASCII
code, a nd print this information too.

1 IZH2) CLS
110 R==0: C==IZl
121Zl PRINT@(21,32),"ROW","COLUMN"
130 X$=INPUT$(1)
140 PRINT @CR,C),X$;
150 C=POS(IZl):R=ROW(IZl)
160 PRINT@ (22,32),R,C;
163 PRINT@ (23,32),STRING$(2~,32) ;
165 PRINT @(23,32),"ASCII CODE IS "HEX$CASC(X$));
171Zl PRINT@(R,C>,"";
1 BIZl GOTO 130

203

SPC
Print Line of Blanks

SPC (number)
number is a numeric expression,

number = 0, 1,2, ... , 255

SPC prints a line of blanks. The number of blanks is determined by the
argument of SPC.

Examples

Sample Program

1 ::?::r D PH I I\IT ~; F' C (7~j) 11 i···!-:.7.' f"• ~::.' ;:

1 2 6 lt.1 P i:n !'-! T ~:;PC a'. 6 t-:J) " :i. :;: "
:i :? 7 (71 F' P J !',i T ::;:: F' C (t1. ~".) " ''" r, "
t :? iJ 1/1 F' F~ 11\i ·r ::::, r:• C (:3 (?i) \/ {; >:: i::1. rn F· ·1 {.' ~;
1298 PRINT SPCC15l "of"

._jv11/1 pr~-r1 1r li:Jr•(:;; -

-204

-

- D~k

See Chapter 4 for sample Pro9rammin9 usin9 these function s .

-
205

CVD, CVI, CVS
Restore String Data to Numeric

CVD (string)
string is a string expression which defines an eight-character string; string is
typically the name of a buffer-field containing a numeric string. If LEN(string)
<8, an Illegal Function Call occurs; if LEN(string)•8, only the first eight
characters are used.

CVI (string)
string is a string expression which defines a two-character string; string is
typically the name of a buffer-field containing a numeric string. If LEN(string)
<2, an Illegal Function Call occurs; if LEN(string)•2, only the first two
characters are used.

CVS (string)
string is a string expression which defines a four-character string; string is
typically the name of a buffer-field containing a numeric string. If LEN(string)
<4, an Illegal Function Call occurs; if LEN(string)•4, only the first four
characters are used.

These functions Jct you restore data to numeric form after it is read from disk.
Typically the data has been read by a GET statement, and is stored in a direct
access file buffer. CVD, CVI, and CVS are the inverses ofMKD$, MKT$, and
MKS$, respectively.

Examples
Suppose the name GROSSPAY$ references an eight-byte field in a direct
access file buffer. and after GETting a record, GROSSPA Y$ contains an
MKD$ representation of the number 13123.38. Then the statement

assigns the numeric value 13123.38 to the double-precision variable A#.

Sample program

T -·::. -::\:. ~I "

This program opens a file named "TEST/DAT" which is assumed to have
been previously created. (For the program which creates the file. see the
section on MKD$. MKI$, and MKS$.) CVL CVS. and CVD arc used to
convert string data back to numeric form.

-

-

-
206

- EOF

-

-

End-of-file detector

EOF (buffer number)

This function checks to see whether all characters up to the end-of-file marker
have been accessed, so you can avoid INPUT PAST END errors during
sequential input.

Assuming number specifies an open file, then EOF(number) returns O (false)
when the EOF record has not yet been read, and -1 (true) when it has been
read.

Examples
JF EOFCFILE> THEN CLOSE FILE

This line determines whether the end-of-file has been reached. If it has, the
specified buffer (file) is closed.

Sample program
The following sequence of lines reads numeric data from DAT A(fXT into
the array A(). When the last data character in the file is read. the EOF test in
line 30 " passes". so the program branches out of the disk access loop,
preventing an INPUT PAST END error from occurring. Also note that the
variable I contains the number of elements input into array A().

147 ~ DIM A(100) 'ASSUMING THIS IS A SAFE VALUE
li•8v.l OPEN "I", 1, ''DATA / TXT"
1 1+90 I% =--" fZl
1500 IF EOF(1) THEN GOTO 1540
1510 INPUT#l, A(I%)
l. ~'i ::~0 I % .,,, I ~I. + 1
1 '.')312! i:10TO 1 :"jf2H7.J
1540 REM PROG. CONT. HERE AFTER DISK INPUT

207

INPUT$
Input Specified Number of Bytes from Disk

INPUT$(length, buffer-number)
buffer-number is a sequential input file buffer (1,2,3, ... 15)
length is the number of bytes to be input

This function is analogous to KEYBOARD INPUT$ except that it inputs
data from disk rather than the keyboard.

You can use disk INPUT$ to get a certain specified number of hytes
(sequential access only). INPUT$, in contrast to INPUT#, allows you to get
any number of data bytes (up to 255) from disk.

Example
AS = INPUT$(2, 12)

Inputs U bytes from disk into A$. File-buffer 2 is used.

Sample Program
220(1 OPEN 11 I"' l, II TEST /Df\ T "
2210 TS= INPUT$ (!~ 70)
~~::~2v.: CL. Of;E

If a file TEST/DAT has been created previously, this program will open it,
retrieve 70 bytes from it, store the date in T$, and close the file.

-

-

-208

-

-

LOC
Get Current Record Number

LOC (file number)
file number is a numeric expression specifying the buffer for a currently­

open file

LOC is used to determine the current record number, i.e., the number of the
last record processed since the file was opened. It returns the record number
that will be used if a GET or PUT is executed with the record number
omitted.

LOC is also valid for sequential files, and gives the number of 1-byte records
processed since the OPEN statement was executed.

Example
PRINT L.OC (1.)

Sample Program
1310 AS = "WILLIAM WILBON~
1320 GFT i
1330 IF N$ = A$ THEN PRINT "FOUND IN RECORD" LOC(1):

CL.Of:iE: END
13L~0 GOTO :l 3:?0

This is a portion of a program. Elsewhere the file has been opened and.
fielded. N$ isa field variable. IfN$ matches A$ the record number in which it
was found is printed.

209

LOF
Get End-of-File Record Number

LOF (number)
number specifies a random access buffer,

number = 1 ,2, ... , 1 5

This function tells you the number o f the last, i.e .. highest-numbered, record
in a file. It is useful for both sequential and direct access.

Examples
Y:cc:l .OFi'':-0)

Puts the record number into variable Y.

Sample Programs
During direct access to a pre-existing file, you often need a way to know when
you've read the last valid record. LOF provides a way.

:• l ... ()F' (:t)
'ORD NUM . TO OE ACCCSSED

If you attempt to GET record numbers beyond the end-of-file record, BASIC
simply fills the buffer with zeroes, and no error is generated.

When you want to add to the end of a file, LOF tells you where lo start
adding:

16kJE! J :-1: , .;.:. 1 ... C'F .. (:t) +
1 b .!. iii PUT :!. , J :~.

' HIGHEST FXISTING RFCORD
. /\0.U NE>'.T HL: COHU

-

-

-210

- MKD$, MKI$, MKS$
Convert Numeric to String

-

MKD$(number). MKl$(number), MKS$(number)
number is a numeric expression.

These three functions are the inverses ofCVD, CVI, and CVS. They change
a number to a s tring. Actually, the byte values which make up the number arc
not changed; only one byte, the internal data-type specifier, is changed, so
that numeric data can be placed in a string variable.

MKD$ returns an eight-byte string; MKI$ returns a two-byte string; and
MKS$ returns a four-byte string.

Examples
LSET AVG$ - MKSSC0.123)

Sample Program
1.3517.J OPEN 11 D", l, "TEST/Dt~T"
l36t2l FIELD 1, 2 AS I1S, 4 AS r 2s, 8
1370 LSET 11$ - MKI$(3000)
1380 LSET 12$ - MKSSC3000.1)
1390 LSET I3S - MKDSC3000.00001)
1 ·\t2l(2) PUT l
l Lt J 0 CL om::

,1\C::· .. ., ~--.' 13$

211

-

-

-

Special Functions

With the special functions you can perform memory-related tasks like finding
or changing the amount of total memory or string space, and discovering the
absolute memory address of the value of a variable.

For example:

S$ = FRE(A$)

will find the number of bytes of string storage space left, and put this value in
S$.

Other special functions, such as V ARPTR and USRn, let you interface your
BASIC program with machine-language programs.

213

FRE
Get Amount of Memory /String Space

FRE (dummy)
dummy is a numeric dummy argument, or a string dummy argument.

FRE returns two different values depending on its argument. If the argument
is a number or numeric variable. FRE will return the total amount of memory
availahle. If the argument is a string or string variahle , FRE will return the
total amount of string storage space that is availahlc.

Examples

Prints the amount of memory left.

Prints the amount of string space left.

Sample Program

1. ',Hi1i PR H .IT F !'~[(" L" :,
1'.'i9D Pi·•i ::u;:; r~_t; "·' "THE MC!OCL II Tfr:,· ··Hl,'1" +

" IS BASED ON A 7-80 Pk0CESSOR . "

-

-

-214

-

-

-

MEM
Get Amount of Memory

MEM

MEM performs the same function as FRE when FRE is followed by a
numeric dummy argument. MEM returns the number of unused and
unprotected bytes in memory. This function may be used in the immediate
mode to see how much space a resident program occupies, or it may be used
inside a program to avert out of memory errors by allocating less string space
and dimensioning smaller array sizes. MEM requires no argument.

Example
PRit\lT MEM

Enter this command (in the immediate mode; no line number is needed) . The
number returned indicates the amount ofleftovermemory, i.e., memory not
being used to store programs, variables, strings, stack, or not reserved for
object files.

Sample Program
1610 IF MEM < 80 THEN 1630
1 62 121 D I M ,<'.\ (l '.":i)

1630 REM PROG RAM CONTINUES HERE

If fewer than 80 bytes of memory are left, control switches to another pa rt of
the program. Otherwise, an array of 15 elements is created.

215

VARPTR
Gets Absolute Memory Address

VARPTR (variable name) or (file number)

V ARPTR returns an absolute memory address which will help you locate a
value in memory. When used with a variable name, it locates the contents of
that variable. When used with a file number, it returns the address of the file·s
data buffer. It the variable you specify has not been assigned a name, or the
file has not been opened, an lllegal Function Call will occur.

V ARPTR is used primarily to pass a value to a machine laguage subroutine
via USRn. Since V ARPTR returns an address which indicates where the
value of a variable is stored, this address can be passed to a machine language
subroutine as the argument of USR; the subroutine can then extract the
contents of the variable with the help of the address that was supplied to it.

If VARPTR(integer variable) returns address K:
Address K contains the least significant byte (LSA) of2-byte integer.
Address K + 1 contains the most significant byte (MSB) of integer.

If VARPTR(sing/e precision variable) returns address K:
(K)• LSB of value
(K+ I) = Next most sig. byte (Next MSH)
(K t-2) MSB with hidden (implied) leading one. Most significant bit is

the sign of the number
(K+3) exponent of value excess 128 (128 is added to the exponent).

If VARPTR(double precision variable) returns K:
(K) LSB of value
(K+l) NextMSB
(K+ ...) NextMSB
(K • 6} MSB with hidden (implied) leading one. Most significant bit is

the sign of the number.
(K + 7) exponent of value excess 128 (128 is added to the exponent).

For single and double precision values, the number is stored in normalized
exponential form. so that a decimal is assumed before the MSB. 128 is added
to the exponent. Furthermore, the high bit ofMSA is used as a sign bit. It is set
to O if the number is positive or to 1 if the number is negative. See examples
below.

-

-

-216

-

-

•

If VARPTR(string variable) returns K:
K = length of string
(K + 1) = LSB of string value starting address
(K + 2) = MSB of string value starting address
* (K) signifies "contents of address K"

The address will probably be in high RAM where string storage space has
been set aside. But, if your string variable is a constant (a string literal) , then it
will point to the area of memory where the program line with the constant is
stored. in the program buffer area. Thus, program statements like
A$="HELLO" do not use string storage space.

For all of the above variables, addresses (K-1) and (K-2) will store the TRS-80
Character Code for the variable name. Address (K-3) will contain a descriptor
code that tells the Computer what the variable type is. Integer is 02 ; single
precision is 04; double precision is 08: and string is 03.

VARPTR(array variable) will return the address for the first byte of that
element in the array. The element will consist of 2 bytes if it is an integer
array: 3 bytes if it is a string array; 4 bytes if it is a single precision array; and 8
bytes if it is a double precision array.

The first element in the array is preceded by:
1. A sequence of two bytes per dimension, each two-byte pair indicating the

"depth" of each respective dimension .
2. A single byte indicating the total number of dimensions in the array.
3. A two-byte pair indicating the total number ot elements in the array.
4. A two-byte pair containing the ASCH-coded array name.
5. A one-byte type-descriptor (02 = Integer, 03 = String,

04 = Single-Precision, 08 - Double-Precision).

Item 1 immediately precedes the first element, Item 2 precedes ltem 1, and so
on.

The elements of the array are stored sequentially with the first dimension­
subscripts varying ''fastest", then the second, etc .

217

Examples

A! = 2 will be stored as follows:
2 = 10 Binary, normalized as .1E2 = .1 x 102
So exponent of A is 128+2 = 130 (called excess 128)
MSB of A is lOO(X)(X)O; however, the high bit is changed to zero since the value
is positive (called hidden or implied leading one) .

So A! is stored as

Exponent (K+3) MSB (K+2) Next MSB (K + 1) LSB(K)
130 u 0 0

A!= - .5 will be stored as
Exponent (K+3) MSB (K+ 2) Next MSB (K+ l) LSB (K)

128 128 0 ()

A!= 7 will be stored as
Exponent (K + 3) MSB (K+ 2) Next MSB (K + 1) LSB (K)

131 96 0 0

A!= - 7:
Exponent (K+3) MSB (K+2) NextMSR (K+ l) LSB (K)

131 224 0 0

Zero is simply stored as a zero-exponent. The other hytes are insignificant.

Example

If Xis an integer value , V ARPTR(X) finds the address of the least significant
byte of X. This address is passed to the subroutine. which in turn passes its
result to Y.

-

-

• 218

-

-

-

USRn
Call User's External Subroutine

USRn (number)
n specifies one of ten available USA calls, n = O, 1,2, ... ,9.

If n is omitted, zero is assumed.
number is a numeric expression, -32768 < = number<32768, which is

passed as an integer argument to the routine.

These functions (USRO through USR9) let you call as many as 10 machine­
language subroutines and then continue execution of your BASIC program.
These subroutines must have been previously defined with DEFUSRn
statements.

"Machine language" is the low-level language used internally by your
Computer. It consists of Z-80 microprocessor instructions. Machine­
language subroutines are useful for special applications (things you can't do in
BASIC) and for doing things very fast (like white-out the Display).

Writing such routines requires familiarity with assembly-language program­
ming and with the Z-80 instruction set. For more information on this
subject, see the Radio Shack book, TRS-80 Assembly-Language Program­
ming, by William Barden, Jr.

When a USR call is encountered in a statement, control goes to the address
defined in the D EFUSRn statement. This address specifies the entry point to
your machine-language routine.

Examples

X =-0= UHl~S (Y)

When this statement is executed, BASIC calls the machine-language routine
USR5, previously defined in a DEFUSR5 = address statement.
Passin9 ar9uments from BASIC to the subroutine;

UPon entry t o a USRn subroutine, the following r e9ister co nt ents are
se t UP (for n otation , see Pa9e 86 of the TRSDOS Reference Manual).

A= TYPe of ar9ument in USRn re f e r ence
A - 8 if ar9ument is double- Precision.
A - 4 if ar9u ment i s sin9le-precision.
A - 2 if ar9ument is inte9er.
A - 3 is ar9ument i s strin9.

HL - When the ar9ument is a number, this re9ister
Points to the ar9ument stora9e area (ASA)
Described later.

219

UBHn, contin1.H~d PAGE 220

Returnin9 values from the subroutine to BASIC

Wh-1:.•n the USRn ~Lr9ument i~- a va.ria.b·1e~ ·y·ou ca.n modif··r its value b··{ •.
chan9in9 the ASA or strin9 contents, as Pointed to bv HL or DE. For
example, the statement:

X ~ UBl~F1 (A%)
transfers contr·ol to the USR1 subroutine, witt1 HL Pointin9 to the
two-bvte ASA for inte9er variable A%. Suppose You modify the contents
of this stora.9e ar~ea. When YOU do a RET instruction to return to
BASIC, A% will have a new value, and X will be assi9ned this new
va.l ue ..

In 9eneral, USRn(ar9ument) will return the same tYPe of value as
ar9ument. However, You can use BASIC 7 s MAKINT routine to return an
inte9er· value. The address of the MAKINT routine is stored at
<X'2805',X'2806'>.

For· example, You rni9ht ir1clude the followin9 code at the end of Your
pro9ram to return a value to BASIC.

MAKINT E@U 2805H
LD HL,VAL VAL is the value to

be r·e tu r- ne d.
F'l.JE,H
l_D
EX

RFT

HL
HL, (i"lc\l·,I NT i
(E,PJ,HL..

Save value in stack
Restore VAL into HL
and Put MAKINT
into ;;;.tack ..
Do MAKINT & return
to BASIC Pro9r-am~ •

•

•
UBRn, continued

DE - When the ar9ument is a strin9, this re9ister Points
Points to a strin9 descriptor, as follows:
The first bvte 9ives the length of the strin9 •
The next two bvtes 9ive the address where the
strin9 is stored: least si9nificant bvte (LSB)
followed bv most significant bvte (MSB).

DescriPtion of Argument Storage Area (ASA)
For numeric values onlv.

--------------------=========================--------------·-
For double-precision numbers:

ASA

ASA-1

Exponent in 128-excess for·m. E.9., a value of
200 indicates a 0 exponent; a value of 128 indicates
a -62 exponent. A value of 0 always indicates the
number· i:::. z ... ~r·o.
Hi9hest 7 bits of the mantissa with hidden (imPlied
leadin9 one. Bit 7 is the si9n of the number (0
Positive, 1 ne9ative). E.9., a value of X'84'
indicates the number is ne9ative and the MSB of
the mantissa is X'84'. A value of X'04' indicates
the number is Positive and the MSB of the mantissa
i !=- X ' 811.' ,.

ASA-2 throu9h ASA-6

ASA-7
Successive 8-bit blocks of the mantissa.
Lowest 8 bits of the mantissa.

For sin9le-Precision numbersg

PAGE 220A

• ASA throu9h ASA·~ .. 3 :;.a.me as fi:,r· di:,uble--pr·eci'.::.ion number·~ ...

•

For inte9er numbers:

ASA
ASA+1

LSB of the number.
MSB of t~1e number .. To9ether, the two bvtes r·ePresent

the number in si9ned, two 1 s complement form.

To convert the ar9ument to integer tvpe:

Your routine can call BASIC 1 s FRCINT routine to Put the ar9ument into
HL in 16-bit~ si9ned two's complement form=
The address of FRCINT is stored in <X'2803',X 1 2804'>.

For example, YOU can put the followin9 code at the be9innin9 of vou.r
~-.ubr·out i ne:

F RC I NT E(i!U

LD

PUSH

L.D

2812):lH

HL.,CTNU

HL

HL, (FRCINTl

(HLl

Cor1verts USR ar9ument
to inte9er in HL

CHL) = continuation
address ..

Save it for return
'fr-om FRCINT

(HL> = force inte9er
r·outine

Do FRCINT r·outine
CTNU Pro9rams continues here with ar9ument

in HL in two's complement inte9er form ..

•
MODEL. II BASIC I CHAPTER 4

CM2BASIC4 8/10/791

1 I File Access Techniques

Model II BASIC Provides two means of file access:
Se9uentia1--in which vou start readin9 or writing
data at the be9innin9 of a file; subsequent reaads or
or writes are done at followin9 Positions in the file"
Direct--in which vou start readin9 or writin9 at anv
record vou sPecifv .. (Direct access also called random
acces.s., but 11 dir·ect 11 is mor-e descr·iPtive ..)

PAGE 221

Se~uential access is stream-oriented; that is, the number of
cti~.racters read or written can varv, and is usuallv determined bv
delimiters in the data. Direct access is record-oriented; that is,
data is alwavs read or written in fixed-len9th blocks called
r·o;:;cor·ds ...

No·te: When vou start BASIC from TRSDOS, You select the maximum
~umber of files You will want to have 0Pen simultaneouslv. For
example, the TRSDOS command line:

TRSDOS READY
BASIC -F:3

starts BASIC with a maximum of three concurrent data files, i.e.,
• data filf:!S (>pen simult;=i.neousl··t.

•

To do anv inPut/outPut to a disk file, You must first •Pen the file.
When You Qpen the file, You specify what kind of access vou want:

''0" for sequential output
"I" for se9uential inPut
"D" for direct inPut/outPut (''R'' can also be used)

You also assi9n a file buffer for BASIC to use during file accesses.
This number can be from 1 to 15, but must not exceed the number of
concurrent files You requested when You started BASIC from TRSDOS.
For example, if You started BASIC with 3 files, You can use buffer
numbers 1, 2, and 3. Once vou assi9n a buffer number to a file, vou
cannot assi9n that number to another file until vou Close the first
file.

Examples:
OPEN 11 0 11

' 1, 11 TEST 11

Creates a sequential output file named TEST on the first available
drive; if TEST already exists, its Previous contents are lost.
Buffer 1 will be used for this file.

OPEN 11 ! 11
, 2, 11 TEST 11

0Pen~. TEST for ::.e·=iuential input, us.ir,9 buffe<r· 2 ..

OPEN 11 D11 ,i,"TEST 11

Qpens TEST for direct access, usin9 buffer 1. If TEST does not
exist, it will be created on the first available drive. Since record
len9th is not specified, 256-bYte records will be useda

MODEL II BASIC

OPEN"D", 1, "TEST", 40
Same as Precedin9 example,

CHAPTER 4

but 40-bvte records will be used~

PAGE 222

•

•

•

•

•

•

MODEL II BASIC CHAPTER 4 PAGE 223

Be~uential Access

This is the simPlest wav to store data in and retrieve it from a
file. It is ideal for storin9 free-form data without wastina space
between data items. You read the data back in the same order in
which it was written.

There are several important Points to keep in mind.

l. You must start writin9 at the be9innin9 of the file. If the data
vou are seeking is somewhere insidej vou have to read vour waY uP to
it.

2. Each time You OPen a file for se~uential output, the file's
Previous contents are lost.

3. To update lchan9el a se~uential file, read in the file and write
out the updated data to a NEW outPut file.

4. Data written se~uentiallY usually includes delimiters !markers)
to si9nifv where each data item beains and ends. To read a file
se9uentiallv, vou must know ahead of time the fo~mat of the data.
For examPle, does the file consist of lines of text terminated with
carr·ia9e ~etu~n? does it consist of numbers separated by blank
spaces? does it consist of a1terntin9 text and numeric information?
etc.

5. Se9uential files are alwavs written as ASCII coded text, on• bvte
for each character of data. For example, the number:

b1.2345b
re9uires 8 bvtes of disk stora9e, including the leading and trailin9
blanks that ara SUPPiied. Th• text string:

Johnson, R-,t,er-t
requires 15 bvtes of disk stora9e~

6~ Sequential files are always written with a record len9th of one.
This matters if YOU want t-, Clos• the file and re-Open it for Direct
access; in such a case, vou must sPecifv a ~•cord len9th of 1~

Sequential Output - An Example
Suppose we want to store a table of English-to-metric conversion
constants:

English unit

I inch
I mile
I acre
I cubic inch
I U.S. gallon
I liquid quart
I lb (avoir)

Metric equivalent

2.5400 I centimeters
1.6093 5 kilometers
4046.86 sq. meters
0.01638716 liter
3.785 liters
0.9463 liter
0.45359 kilogram

First we decide what the data image is going to be. Let's say we want
it to look like this:

english unit->metric unit, factor <EN>

For example, the stored data would start out:

IN->CM,l,l2.540011,l <EN>

The following program will create such a data file.

Note: <EN> represents a carriage return, hex OD.

•

•

• 224

•

•

•

10 OPEN" 0", 1, "11ETR I C/TXT"
20 FORI%=1 TO 7
30 READ UNIT$,FACTR
40 PRINT#1, UNIT$; ", "; FACTR
50 NEXT
60 CLOSE
70 DATA IN-)Cl1, 2. 54001, 111 - >Kt1, 1. 60935, ACRE-)SQ. 11, 4046. 86
80 DATA CU. IN-)LTR,1. 638716E-2,GAL->LTR,3. 785
90 DATA LIQ. QT->LTR,0. 9463,LB->KG,0.45359

Line 10 creates a disk file named METRIC/TXT, and assigns buffer 1
for sequential output to that file. The extension /TXT is used because
sequential output always stores the data as ASCII-coded text.

Note: IfMETRIC/TXT already exists, line 10 will cause all its data
to be lost. Here's why: Whenever a file is opened for sequei:,tial
output, the EOF marker is_ set to the beginning of the file. In effect,
TRSDOS "forgets" that anything has ever been written beyond
this point.

Line 40 prints the current contents of UNIT$ and FACTR to the file
buffer. The disk-write won't actually take place until the buffer is
filled or you close the file, whichever happens first. Since the string
items do not contain delimiters, it is not necessary to print explicit
quotes around them. The explicit comma is sufficient.

Line 60 closes the file. The EOF marker points to the end of the last
data item, i.e., 0.45359, so that later, during input, DISK BASIC will
know when it has read all the data .

225

Sequential Input - An Example

The following program reads the data from METRIC/TXT into two
"parallel" arrays, then asks you to enter a conversion problem.

5 CLEAR 500
10 DIM UNITS$(9), FACTR(9) 'ALLOWS FOR UP TO 10 [>ATA PAIRS
20 OPEN" I", 1, "METRIC/TXT"
25 1~;=0
30 IF EOF(1) THEN 70
40 INPUT#1, UNIT$(I,;)., FACTR(1%)
50 1%=!%+1
60 GOTO 30
70 REM ... THE CONVERSION FACTORS HAVE BEEN REA[> IN
100 CLS : PR INT TAB (5) "*** ENGL! SH TO METRIC CONVERSIONS ***"
110 FOR ITEM%=0TOl%-1
120 PRINT USING"(##) ~; r."; ITEM~;, UNIT$<ITEM%)
130 NEXT
140 PRINT@704, "WHICH CONVERSION ";
150 INPUT CHO I CE%
155 PRINT@768, "ENTER ENGLISH GIUANTITY";
160 INPUT V
170 PRINT"THE METRIC EQUIVALENT IS"\/*FACTR(CHOICEX)
180 INPUT"PRESS ENTER TO CONTINUE"; X
190 PRINT@704, CHR$G1); 'CLEAR TO END OF FRAME
200 GOTO 140

Line 20 opens the file for sequential input. The read pointer is
automatically set to the beginning of the file.

Line 30 checks to see that the end-of-file record hasn't been read.
If it has, control branches from the disk input loop to the part of the
program that uses the newly acquired data.

Line 40 reads a value into the string array UNIT$(), and a number into
the single-precision array F ACTR(). Note that this INPUT list
parallels the PRINT# list that created the data file (see the section
"Sequential Output: An example"). This parallelism is not required,
however. We could just as successfully have used:

40 INPUT#1,IJN!T$(1%): INPUT#1,FACTR(I%)

•

•

• 226

•

•

•

How to update a f"de

Suppose you want to add more entries into the English-Metric
conversion file. You can't simply re-open the file for sequential
output and PRI;l{T # the extra data - that would immediately set
the end-of-file marker to the beginning of the file, effectively
destroying the file's previous contents. Do this instead:

I) Open the file for sequential input
2) Open another new data file for sequential output
3) Input a block of data and update the data as necessary
4) Output the data to the new file
5) Repeat steps 3 and 4 until all data has been read,

updated, and output to the new file; then go to
step 6

6) Qose both files

227

Sequential LINE INPUT - An Example

Using the line-oriented input, you can write programs that edit other
BASIC program files : renumber them, change LPRINTs to PRINTs,
etc. ~ as long as these "target" programs are stored in ASCII format.

The following program counts the number of lines in any disk file
with the extension "/TXT".

10 CLEAR 300
20 INPUT "WHAT IS THE NAME OF THE PROGRAl1"; PROG$
30 IF INSTR(PROG$, "/TXT")=0 THEN 110 'REQUIRE /TXT EXTENSION
40 OPEN" I ", 1, PROG$
50 1%=0
60 IF EOF U HHEN 90
70 I%= I% +1 : LI NE INPUT #1, TEMP$
80 GOT060
90 PRINT"THE PROGRAM IS" !%"LINES LONG. "
100 CLOSE: GOT020
110 PRINT "FILESPEC MUST INCLUDE THE EXTENSION ,"/TXT'"
120 GOT020

For BASIC programs stored in ASCII, each program line ends with
an < EN > character not preceded by an < LF > line feed.
So the LINE INPUT in line 70 automatically reads one entire line at
a time, into the variable TEMP$. Variable I% actually does the
counting.

•

•

• 228

•

•

•

DIRECT ACCESS TEClltlIQUES

Direct acces' offers several advantages over sequential access:

• Instead of having to start reading at the beginning of a file,
you can read any record you specify.

• To update a file, you don't have to read in the entire file,
update the data, and write it out again. You can rewrite or
add to any record you choose, without having to go through
any of the other records.

• Direct access is more efficient data takes up less space and
is read and written faster.

• Opening a file for direct access allows you to write to and
read from the file via the same buffer.

• Direct. access provides many powerful statements and
functions to structure your data. Once you have set up the
structure, random input/output becomes quite simple.

The last advantage listed above is also the "hard part" of direct
access. It takes a little extra thought.

For the purposes of direct access, you can think of a disk file as a
set of boxes - like a wall of post-office boxes. Just like the post
office receptacles, the file boxes are numbered.

The number of boxes in a file will vary, but it's always a multiple
of 5.

The smallest non-empty file contains 5 boxes, numbered l through
5. When the file needs more space to hold more data, TRSDOS
provides it in increments of 5.

Each record may contain between 1 and 256 bytes. The
length of the records is set when you create a •il e, in
the OPEN statement.

You can place data in any record, or read the contents of any
record, with statements like:

PUT 1, 5
GET 1, 5

write buffer• I contents to record 5
read the contents of record 5 into buffer•]

229

~~ r I t I I

~'VJ.I,) (BM,) (:Ms)(~) (Jilt)

#8 #7 #8 #9

(...)("·) ("•)(»•). BY-TES BYTES BYT£S BYTES

#1 #2 #3 #4

RECORDS IN DISK FILE 1/0 BUFFERS IN RAM

The buffer is a waiting area for the data. Before writing data to a file,
you must place it in the buffer assigned to the file. After reading
data from a file, you must retrieve it from the buffer.

As you cau see from the sample PUT and GET statements above, data
is passed to and from the disk in 256-byte chunks.

You can pl ace severa 1 va 1 ues into the buffer before
PUTting its contents into the disk file, to avoid wasting disk space.

This is accomplished by 1) dividing the buffer up into fields and
naming them, then 2) placing the string or numeric data into the
fields.

For example, suppose we want to store a glossary on disk. Each
record will consist of a word followed by its definition. We start
with:

100 0PEN"R", 1, "GLOSSfiRY/BflS"
110 FIELD 1,16 AS WD$,240 AS MEANING$

Line 100 opens a file named GLOSSARY /BAS (creates it if it doesn't
already exist); and gives buffer 1 direct access to the file.

Line 110 defines two fields onto buffer I:
WO$ consists of the first 16 bytes of the buffer;
MEANING$ consists of the last 240 bytes.

WO$ and MEANING$ are now field-names.

7-66

•

•

•
230

•

•

•

What makes field names different? Most string variables point to an
area in memory called the string space. This is where the value of
the string is stored.

Field names, on the other hand, point to the buffer area assigned
in the FIELD statement. So, for example, the statement:

10 PR INT WD$ " : " MEAN ING$
displays the contents of the two buffer fields defined above.

These values are meaningless unless we first place data in the buffer.
LSET, RSET and GET can all be used to accomplish this function.
We'll start with LSET and RSET, which are used in preparation
for disk output.

Our first entry is the word "left-justify" followed by its definition.

100 OPEN"R",1, "GLOSSARY/BAS"
110 FIELD 1,16 AS WDt,240 AS MEANING$
120 LSET WD$="LEFT-JUSTIFY"
130 LSET MEANING$="TO PLACE A VALUE IN A FIELD FROM LEFT
TO RIGHT; IF. THE DATA DOESN'T FILL THE FIELD, BLANKS ARE ADDED
ON THE RIGHT; IF THE DATA IS TOO LONG, THE EXTRA CHARACTERS ON
THE RIGHT ARE IGNORED. LSET IS A LEFT-JUSTIFY FUNCTION."

Line 120 left-justifies the value in quotes into the first field in buffer
I. Line 130 does the same thing to its quoted string. When typing
in line 130, you should insert line-feed <CTRL J> characters

to force line breaks as above. This makes it easier
to print out the data after reading it back in to a string variable.

Note: RSET would place filler-blanks to the left of the item.
Truncation would still be on the right.

Now that the data is in the buffer, we can write it to disk with a
simple PUT statement:

140 PUT 1,1
150 CLOSE

This writes the first record into the file GLOSSARY /BAS.

To read and print the first record in GLOSSARY /BAS, use the
following sequence:

160 OPEN"R",1, "GLOSSARY/BAS"
170 FIELD 1, 16 AS WD$,240 AS MEANING$
180 GET 1,1
190 PR INT WO$ " : " MEAN ING$
200 CLOSE

Lines 160 and 170 are required only because we closed the file in
line 150. If we hadn't closed it, we could go directly to line 180 .

231

DI RE CT ACCESS: A GENERAL PROCEDURE

The above example shows the necessary sequences to read and
write using direct access. But it does not demonstrate the primary
advantages of this form of access - in particular, it doesn't show
how to update existing files by going directly to the desired record.

The program below, GLOSSACC/BAS, develops the glossary example
to show some of the techniques of direct access for file maintenance.
But before looking at the program, study this general procedure for
creating and maintaining files via direct access.

Step Number

I. OPEN the file
2. FIELD the buffer
3. GET the record to be updated
4. Display current contents of

the record (use CVD,CVI,CVS
before displaying numeric data)

5. LSET and RSET new values into
the fields (use MKD$,MKI$,MKS$
with numeric data before setting
it into the buffer)

6. PUT the updated record
7. To update another record, continue

at step 3. Otherwise, go to step 8.
8. Close the file

7-68

See GLOSSACC/BAS, Line Number

110
120
140
145-170

210-230

240
250-260

270

•

•

• 232

•

•

•

10 REM ... OLOSSACC/BAS. ..
100 CLS: CLEAR 300
110 OPEN"R",1,"GLOSSARY/BAS"
120 FIELD 1, 16 AS WD$, 238 AS MEANING$, 2 AS N~:s
130 INPUT"WHf\T REC:CtRD DO YOU WRNT TO ACCESS"; Rli
140 GET 1, R"I.
145 NXX=CVI<NX$) 'SAVE LINK TO NEXT ALPHABETICAL ENTRY
150 PRINT"WORD: "WO$
160 PRINT"DEF'N:": PRINTMEANJNG$
170 PRINT"NEXT ALPHABETICAL ENTRY: RECORDll"NXX: PRINT
180 W$="" :. INPUT"TYPE NEW WORO<EN) OR (EN> IF OK"; W$
190 0$="":PRINT"TYPE NEW DEF,N<:EN> OR (EN> IF OK?":LINEINPUTD$
200 INPUT"TYPE NEW SEQUENCE NUMBER OR <:EN> IF OK";NXX
210 IF W$<)""THEN LSET WD$.,W$
220 IF [)$()""THEN LSET 11EANlN0$=D$
230 LSET NX$=MK!$(NXli)
240 PUT 1,RX
245 Rli=Nlili 'USE NEXT ALPHA. LINK AS DEFAULT FOR NEXT RECORD
250 CLS: INPUT" TYPE(EN> TO READ NEXT ALPHA. ENTRY,

OR RECORD II (EN> FOR SPECIFIC ENTRY,
OR 0 (EN> TO QUIT";RX

260 IF 0<RX THEN 140
270 CLOSE
280 ENO

Notice we've added a field, NX$, to the record (line 120). NX$ will
contain the number of the record which comes next in alphabetical
sequence. This enables us to proceed alphabetically through the
glossary, provided we know which record contains the entry which
should come first.

For example, suppose the glossary contains:

record#

l
2
3
4

word(WD$)

LEFT-JUSTIFY
BYTE
RIGHT-JUSTIFY
HEXADECIMAL

deftt,
pointer to next
alpha. entry (NX$)

3
4
0
l

When we read record 2 (BYTE), it tells us that record 4
(HEXADECIMAL) is next, which then tells us record I (LEFT­
JUSTIFY) is next, etc. The last entry, record 3 (RIGHT-JUSTIFY),
points us to zero, which we take to mean "THE END".

Since NX$ will contain an integer, we have to first convert that
number to a two-byte string representation, using MKI$ (line 230
above) .

233

The following program displays the glossary in alphabetical sequence:

!00 REM ... GLOSSOUT/BAS.,.
!10 CLS: CLEAR !00
320 OPEN"R", 1, "GLOSSARY/BAS"
!!0 FIELD 1, 16 AS MD$, 238 AS MEANING$, 2 AS NX$
J40 INPUT"WHICH RECORD !5 FIRST ALPHABETICALLY";W.
350 GET 1, N:Y.
360 PRINT:PR1NTWD$
370 PRINTMERNING$
!80 Nr.=C\II<NX$)
390 INPUT"PRESS ENTER TO CONTINUE"; X
400 IF N:Y.00 THEN 350
410 CLOSE
420 ENO

•

•

• 234

•

•

•

Overlapping Fields

Suppose you want to access a field in two ways - in total and in
part. Then you can assign two field names to the same area of the
buffer.

For example, if the first two digits of a six-digit stock-number specify
a category, you might use the following field structure:

FIELD I, 6 AS STOCK$,
FIELD I, 2 AS CTG$,

Now STOCKS will reference the entire stock-number field, while
CTG$ will reference only the first two digits of the number .

7-76
235

•

Chapters

Using the Line Editor

•

• 236

•

•

•

Using the Line Editor
The Line Editor is a powerful set of subcommands which simplifies
programming by making it easy to make corrections. In inputting long
application programs, the Editor is a fast and efficient way to debug the
program and get it running. There are two ways to activate the Editor:

Fl
If you type in a long program line or an input line and realize you have made a
mistake, you can also activate the Editor by hitting the Fl key before you
press ENTER . This will activate the Editor and all of its subcommands
listed above.

EDIT line number
This command starts tbe Editor when you want to edit program lines which
have already been entered. You must specify which line you wish to edit, in
one of two ways:

This command puts you in the Edit Mode. You must specify which line you
wish to edit, in one of two ways:

EDIT line-number l::f:ii:l;I
or

EDIT.

Lets you edit the specified line.
If line number is not in use, an FC error
occurs

Lets you edit the current program line -
last line entered or altered or in which an
error has occurred.

For example, type in and !=l:u:j;I the following line:

100 FOR I = 1 TO 10 STEP .5 : PRINT I, 1"2, 1"3 : NEXT

This line will be used in exercising all tbe Edit subcommands described below .

237

Now type EDIT 100 and hit l=NiUhJ. The Computer will display:

100

This starts the Editor. You may begin editing line 100.

NOTE: EDITing a program line automatically clears all variable values and
eliminates pending FOR/NEXT and GOSUB operations. If BASIC
encounters a syntax error during program execution, it will automatically put
you in the EDIT mode. Before EDITing the line, you may want to examine
current variable values. In this case, you must type Q as your first EDIT
command. This will return you to the command mode, where you may
examine variable values. Any other EDIT command (typing E, pressing
ENTER, etc.) will clear out all variables.

ENTERkey
Hitting l=l:ii#j;I while in the Edit Mode causes the Computer to record all
the changes you've made (if any) in the current line, and returns you to the
Command Mode.

nSpace-bar
In the Edit Mode, hitting the Space-Bar moves the cursor over one space to
the right and displays any character stored in the preceding position. For
example, using line lOOentered above, put the Computer in the Edit Mode so
the Display shows:

100

Now hit the Space-Bar. The cursor will move over one space, and the first
character of the program line will be displayed. If this character was a blank,
then a blank will be displayed. Hit the Space-Bar until you reach the first
non-blank character:

100F

is displayed. To move over more than one space at a time, hit the desired
number of spaces first, and then hit the Space-Bar. For example, type 5 and
hit Space-Bar, and the display will show something like this (may vary
depending on how many blanks you inserted in the line):

100FORI=

•

•

•
238

•

•

•

Now type 8 and hit the Space-Bar. The cursor will move over 8 spaces to the
right, and 8 more characters will be displayed.

nBACKSPACE
Moves the cursor to the left by n spaces. If no number n is specified, the cursor
moves back one space. When the cursor moves to the left, all characters in its
"path" are erased from the display, but they are not deleted from the
program line. Using this in conjunction with Dor Kor C can give misleading
Video Displays of your program lines. So, be careful using it! For example,
assuming you've used nSpace-Bar so that the Display shows:

100FORl=1 T010 I

type8andhitthe BACKSPACE key. TheDisplaywillshowsomethinglike
this:

100FORI=

ESC

(will vary depending on number of blanks in your line
100)

Hitting the ESC key effects an escape from any of the Insert subcommands
listed below: X, I and H. After escaping from an Insert subcommand, you'll
still be in the Edit Mode, and the cursor will remain in its current position .
(Hitting 1:1:u3;1 is another way to exit these Insert subcommands) .

239

L (List Line)
When the Computer is in the Edit Mode, and is not currently executing one of
the subcommands below, hitting L causes the remainder of the program line
to be displayed. The cursor drops down to the next line of the Display,
reprints the current line number, and moves to the first position of the line.
For example, when the Display shows

100

hit L (without hitting 1:Uu::j;1 key) and line 100 will be displayed:

100 FOR 1=1 TO 10 STEP .5: PRINT I, JA2, J"-3: NEXT
100

This lets you look at the line in its current form while you're doing the editing.

X (Extend Line)
Causes the rest of the current line to be displayed, moves cursor to end ofline,
and puts Computer in the Insert subcommand mode so you can add material
to the end of the line. For example, using line 100, when the Display shows

100

hit X (without hittin." 1:Uu::j;j land t.he entire line will be displayed; notice
that the cursor now follows the last character on the line:

1.00 FOR 1=1 TO 10STEP .5: PRINT I, l"-2, 1"3 :NEXT

We can now add another statement to the line, or delete material from the
line by using the BACKSPACE key. For example, type : PRINT"DONE" at the
end of the line. Now hit @:u::j;I IfyounowtypeLIST 100, the Display
should show something like this:

100 FOR 1=1 TO 10STEP .5: PRINT I, JA2, 1"3: NEXT: PRINT"DONE"

Note: If you want to continue editing the line, type the ESC key to get out of
the "X" command mode.

•

•

•
240

• I (Insert)

Allows you to insert material beginning at the current cursor position on the
line. (Hitting BACKSPACE will actuall~ delete material from the line in this
mode.) For example, type andl::i:U::j 6 the EDIT lOOcommand, then use
the Space Bar to move over to the decimal point in line 100. The Display will
,show:

100FORl=1TO10STEP.

supirse iou wantto change the increment from .5 to .25. Hitthe I key (don't
hit::j:i §!;I) and the Computer will now let you insert material at the
current position. Now hit 2 so the Display shows:

100 FOR 1=1 TO 10STEP .2

You've made the necessary change, so hit ESC to escape from the Insert
Subcommand. Now hit L key to display remainder of line and move cursor
back to the beginning of the line:

100 FOR 1=1 TO 10STEP .25: PRINT I, IA2, IA3: NEXT: PRINT"DONE"
100

You can al_so exit the Insert subcommand and save all changes by hitting
13:ij:j;j. This will return you to Command mode.

• A (Cancel and Restart)

•

Moves the cursor back to the beginning of the program line and cancels
editing changes already made. For example, if you have added, deleted, or
changi:,d something in a line, and you wish to go back to the beginning of the
line and cancel the changes already made: first hit ESC (to escape from any
subcommand you may be executing); then hit A. (The cursor will drop down
to the next line, display the line number and move to the first program
character.

E (Save Changes and Exit)

Causes Computer to end editing and save all changes made. You must be in
Edit Mode, not executing any subcommand, when you hit E to end editing .

241

Q (Cancel and Exit)

Tells Computer to end editing and cancel all changes made in the current
editing session. If you've decided not the change the line, type Q to cancel
changes and leave Edit Mode.

H (Hack and Insert)

Tells Computer to delete remainder ofline and lets you insert material at the
current cursor position. Hitting BACKSPACE will actually delete a
character from the line in this mode. For example, using line 100 listed above,
enter the Edit Mode and space over to the last statement, PRINT"DONE".
Suppose you wish to delete this statement and insert and END statement.
Display will show:

100 FOR 1=1 TO 10 STEP .25: PRINT I, IA 2, I A3: NEXT:

Now type Hand then type END. Hit l=!~U:j;I key. List the line:

100 FOR I= 1 TO 10 STEP .25 : PRINT I, IA 2, I A3: NEXT: END

should be displayed.

Note: To continue editing the line, type the ESC key to get you out of the
"H" subcommand.

nD (Delete)

Tells Computer to delete the specified number n characters to the right of the
cursor. The deleted characters will be enclosed in exclamation marks to show
you which characters were affected. For example, using line 100, space over
to the PRINT command statement:

100 FOR 1=1 TO 10 STEP .25:

Now type 19D. This tells the Computer to delete 19 characters to the right of
the cursor. The display should show something like this:

100 FOR 1=1 TO 10 STEP .25: /PRINT I, 1"2, IA3 :/

When you list the complete line, you'll see that the PRINT statement has
been deleted.

•

•

•
242

•

•

•

nC (Change)
Tells the Computer to let you change the specified number of characters
beginning at the current cursor position. If you type C without a preceding
number, the Computer assumes you want to change one character. When you
have entered n number of characters, the Computer returns you to the Edit
Mode (so you're not in the nC Subcommand). For example, using line 100,
suppose you want to change the final value of the FOR-NEXT loop, from
"10" to "15". In the Edit Mode, space over to just before the "O" in "10".

100 FOR 1=1 TO 1

Now type C. Computer will assume you want to change just one character.
Type 5, then hit L. When you list the line, you'll see that the change has been
made.

100 FOR 1=1 TO 15STEP .25 :NEXT: END

would be the current line if you've followed the editing sequence in this
chapter.

The BACKSPACE does not work as a backspace under the C command in
the Editor. Instead, it replaces the character you want to change with a
backspace. So it should not be used. If you make a mistake while typing in a
change, Edit the line again to correct it, instead of using the BACKSPACE
key.

nSc (Search)
Tells the Computer to search for the nth occurrence of the character c, and
move the cursor to that position. If you don't specify a value for n, the
Computer will search for the first occurrence of the specified character. If
character c is not found, cursor goes to the end of the line. Note: The
Computer only searches through characters to the right of the cursor.

For example, using the current form of line 100, type EDIT 100 (1::J:U=!;ll
and then hit2S:. This tells the Computer to search for the second occurrence
of the colon character. Display should show:

100 FOR 1=1 TO 15 STEP .25: NEXT

243

You may now execute one of the subcommands beginning at the current
cursor position. For example, ~uppose you want to add the counter variable
after the NEXT statement. Type I to enter the Insert subcommand, then type
the variable name, I. That's all you want to insert, so bit ESC to escape from
the Insert subcommand. The next time you list the line, it should appear as:

100 FOR 1=1 TO 15 STEP .25: NEXT I: END

nKc (Search and "Kill")
Tells the Computer to delete all characters up to the nth occurrence of
character c, and move the cursor to that position. For example, using the
current version of line 100, suppose we want to delete the entire line up to the
END statement. Type EDIT 100 (l::i:u::j;I), and then t;'Pe 2K:. This tells
the Computer to delete all characters up to the 2nd occurrence of the colon.
Display should show:

100 FOR 1=1 TO 15STEP .25: NEXTI/

The second colon still needs to be deleted, so type D . The Display will now
show:

100/FOR 1=1 TO 15STEP .25: NEXTI//:/

Now hit !=J:jj=l;I and type LIST 100 ("l3'"'a"'1"'3";••l.

Line 100 should look something like this:

100END

•

•

• 244

•

APPENOI X

•

•
245

·•

•

•

RESERVED WORDS APPENDIX A

A reserved word with a do11ar-si9n ("$") after it mav be used
as a numeric variable name if the dollar-si9n is droPPed. For
instance, CHR and CHR# are valid variable names. However, DEF
statements mav not be used to assi9n values to this tvPe of
variab'lt•~

ABS FOR OR ~JIDTH
AND FORl'li\T POINT XOR
ASC FRE POS
ATN FREE POSN
AUTO GET Pf-lINT
CDBL. GOSUB PUT
CI-IR$ GOTO RANDOM
CINT HEX$ READ
Cl..l::Ml IF !~EM
CL.OCf, IMP RENAME
CLOSE INKEY$ HEl~IJM
CL.S INPUT F;ESTORE
CONT INPUT$ RESUME
cos INSTR HETURN
CSNG I rrr RIGHT$
CVD KILL HND
CVI LEFT$ ROW
CVS LEN RBET
DATA LET HUN
D/,TE:$ LINE SAVE
DEF LINEINPUT SGN
DEFDBL LIST SIN
DEFFN LL..IST SPACE$
DEFINT LO/,D SPC
DEFSNG LOC t,0.li

DEFSTH LOF STEP
DEFUSR L.<:H:i BTOP

DELETE LPOE; STR$

DIM L.SET STHIN6$
EDIT MEI"!

SWAP
ELSE MERGE SYSTEM
END MID$ TAB
EOF MKD$ TA~J
EG~V Ml·<!$ THEN
ERASE Ml·,E,$ TIME$
EHL.. MOD TO
ERl'l NAME TROFF
ERHOR NEW TRON
EXP NEXT USING
FIEL.D NOT USR
FILES OCT$ VAL
FIX ON VAFlPTR
FN OPEN VERIFY

247

•

•

•

ERROR MESSAGES APPENDIX B

MODEL II BASIC ERROR MESSAGES

CODE ABBREVIATION

1 I\IF
,.,
,: SN
3 HG
'1• OD
5 FC
6 ov
7 OM
8 UL.
'} BS

10 DD
11 /11)
1 -. .,_ ID
13 TM
14 OS
1 ~) LS
16 ST
17 CN
18 UF
19 NR
20 RW
21 UE
22 MO
23 BO

DISK ERRORS

50 FO
::) 1 IE
52 BN
53 FF
5'+ BM
55 AO
57 FE
~l8 UE
61 RN
l: .-. 1J:.:. NM
63 MM
61.~ UE
66 FL
67 UE

MEANING

NEXT without FOR
S·y•nta::{ er·r·or·
Return without GOSUB
Out of data
Ille9al function call
Over-fl i:,w
Out of rfl'l::.'ITIOr·Y

Undefined line
Subscript out of ran9e
Redimensioned arrav
Divi::-i1:in by zer-o
Illegal direct
TYPe mismatch
Out of string space
Str·i119 i:1::ii:1 l on9
String formula too complex
Can 1 t continue
Undefined user function
No RESUME
RESUME without error
Unprintable error
Mis~. i n9 oper·and
Line buffer overflow

Field ,::iv-E-r·flow
Inter-nal er-r-or­
Bad 1' i le number
File ni:1t found
Bad file· mode
File alreadv open
Di s.k I /0 er·r·(,r
File already exists
Dis-k ·full
Input Pas.tend
Bad record number
Bad file name
Direct statement in filel
Too marn·· f i 1 es

249

•

•

•

APPEND! X C

Glossary
access

The method in which information is read from or written to disk;
see direct access and sequential access.

address

A location in memory, usually specified as a two-byte hexadecimal
number. The address range<:O to FFFF>is represented in decimal
as<O to 32767 > <-32768, ... , -1 >

alphabetic

Referring strictly to the letters A-Z.

alphanumeric

Referring to the set of letters A-Z and the numerals 0-9.

argument

The string or numeric quantity which is supplied to a function and
is then operated on to derive a result; this result is referred to as
the value of the function .

array

An organized set of elements which can be referenced in total or
individually, using the array name and one or more subscripts.
In BASIC, any variable name can be used to name an array; and
arrays can have one or more dimensions. AR() signifies a
one-dimensional array named AR; AR(,) signifies a
two-dimensional array named AR; etc.

ASCII

American Standard Code for Information Interchange. This method
of coding is used to store textual data. Numeric data is typically
stored in a more compressed format.

ASCII format disk file

Disk files in which each byte corresponds to one character of the
original data. For example, a BASIC program stored in ASCII format
"looks like" the program listing, except that each character is
ASCII-coded. Compare to compressed-format file .

251

backup disk

An exact copy of the original: a "safe copy". You should keep
backups of your original TRSDOS diskette and all important data
diskettes.

BASIC

Beginners' All-purpose Symbolic Instruction Code, the programming
language which is stored in ROM in the TRS-80. Radio Shack
supports LEVEL I BASIC, LEVEL II BASIC, and DISK BASIC.
LEVEL II is a subset of DISK BASIC.

binary

Having two possible states, e.g., the binary digits O and 1: The
binary (base 2) numbering system uses sequences of zeroes and ones
to represent quantities. This is analagous to the Computer's internal
representation of date, using electrical values for O and I.

bit
Binary digit; the smallest unit of memory in the Computer, capable
of representing the values O and 1.

break

To interrupt execution of a program. In BASIC the statement
STOP

causes a break in execution, as does pressing the BREAK key.

buffer

An area in RAM where data is accumulated for further processing.
For example, to pass data from BASIC to a disk file, and vice­
versa, the data must go through a file-buffer.

buffer field

A portion of the buffer which you define as the storage area for a
buffer-field variable. Dividing a buffer into fields allows you to
pass multiple values to and from disk storage.

252

APPENDIX C

•

•

•

•

•

•

APPENDIX C

byte

The smallest addressable unit of memory in the Computer,
consisting of 8 consecutive bits, and capable of representing 256
different values, e.g., decimai values from Oto 255.

compressed-format

A method of storing information in less space than a standard ASCII
representation would require. An integer always requires two bytes;
a single-precision number, four; a double-precision number, 8 -
regardless of how many characters are required to represent the
numbers as text. String values cannot be stored in compressed
format.

BASIC programs in RAM and non-ASCII disk files are stored in
compressed-format, with all BASIC keywords stored as special
one-byte codes .

close
Terminate access to a disk file. Before re-accessing the file, you
must re-open it.

data
Information that is passed to our output from a program; under
LEVEL II and DISK BASIC, there are four types of data:

• integer numbers
• single-precision floating point numbers
• double-precision floating point numbers
• character-string sequences, or just "strings,,

debug
To isolate and remove logical or syntax errors from a program .

253

decimal

Capable of assuming one of ten states, e.g., the decimal digits
0, 1, ... ,9. Decimal (base 10) numbering is the everyday system,
using sequences of decimal digits. Decimal numbers are stored in
binary code in the Computer.

default

An action or value which is supplied by the Computer when you
do not specify an action or value to be used.

delimiter

A character which marks the beginning or end of a data item, and
is not a part of the data. For example, the double-quote symbol is
a string delimiter to BASIC.

destination

The device or address which receives the data during a data transfer
operation. For example, during a BACKUP operation, the destination
disk is the one onto which the source-disk is being copied.

device

A physical part of the computer system used for data 1/0, e.g.,
keyboard, display, line printer, cassette, disk drive, voice synthesizer.

directory
A listing of the files which are contained on a disk.

direct access
Direct access lets you read or write directly to a
file. Contrast with sequential access.

diskette or disk
A magnetic recording medium for mass data storage.

drive specification or drivespec
An optional field in a TRSDOS file specification and in some
TRSDOS commands, consisting of a colon followed by one of the
digits O through 3. The drivespec is used to specify which drive is to
be used for a disk read or write.

When the drivespec is omitted from a command involving a read
operation, TRSDOS will search. through all the disks for the
desired file, starting with drive 0.

When the drivespec is omitted from a command involving a write
operation, TRSDOS will generally search through all non
write-protected drives for the desired file.

254

APPENDIX C

•

•

•

•

•

•

APPENDIX C

drive number

An integer value from Oto 3, specifying one of the Disk
drives.

dummy variable

A variable name which is used in an expression to meet syntactic
requirements, but whose value is insignificant to the programmer.

edit

To change existing information.

entry point

The address of a machine-language program or routine where
execution is to begin. This is not necessarily the same as the
starting address. Entry point is also referred to as the
transfer address .

field

e

A user-defined subdlvision of a direct access file-buffer, created
and named with the FIELD statement.

field name

A string variable which has been assigned to a field in a direct
access file-buffer via the FIELD statement.

file
An organized collection of related data. Under TRSDOS, a file is the
largest block of information which can be addressed with a single
command. BASIC programs and data sets are stored on disk in
distinct files.

file extension
An optional field in a file specification, consisting of a / followed by

up to three alphanumeric characters; the
extension can be used to identify the file type, e.g., /BAS, /TXT,
/CIM, for BASIC, text, and core image, respectively .

255

filename

A required field in a file specification, consisting of one alphabetic
followed by up to 7 alphanumeric characters. Filenames are assigned
when a file is created or renamed.

file specification or filespec

A sequence of characters which specifies a particular disk file under
TRSDOS, consisting of a mandatory filename, followed by an
optional extension, password, and dri vespec, and optional disk.

fonnat

To organize a new or magnetically erased diskette into tracks and
sectors, via the TRSDOS FORMAT utility.

granule

The smallest unit of allocatable space on a disk, consisting of
5 sectors.

hexadecimal or hex
Capable of existing in one of 16 possible states. For example, the
hexadecimal digits are 0,1,2, .. , ,9,A,B,C,D,E,F. Hexadecimal
(base-16) numbers are sequences of hexadecimal digits. Address and
byte values are frequently given in hexadecimal fonn. Under DISK
BASIC, hexadecimal constants can be entered by prefixing the
constant with &H.

increment

The value which is added to a counter each time one cycle of a
repetitive procedure is completed.

input

To transfer data from outside the Computer (from a disk file,
keyboard, etc.) into RAM.

256

APPENDIX C

•

•

•

•
APPENDIX C

kilobyte or K

1024 bytes of memory. Thus a 12 KROM includes 12*1024=12288
bytes.

logical expression

An expression which is evaluated as either True (=-!) or FALSE (=0).

• logical record

•

A block of data which contains from I to 256 bvtes, and can be
addressed as a unit.

machine language

The Z-80 instruction set, usually specified in hexadecimal code. All
higher-level languages must be translated into machine-language in
order to be executed by the Computer.

null string

A string which has a length of zero; For example, the assignment
A$= II,,

makes A$ a null-string.

object code

Machine language derived from "source code", typically, from
Assembly Language .

257

octal

Capable of existing in one of 8 states, for example, the octal digits
are 0,1, ... ,7. Octal (base-8) numbers are sequences of octal
digits. Address and byte values are frequently given in octal form.

Under Model I I BASIC, an octal constant can be entered by prefixing
the octal number with the symbol &O.

open

To prepare a file for access by assigning a sequential input,
sequential output, or random I/0 buffer to it.

output

To transfer data from inside a Computer's memory to some external
area, e.g., a disk file or a line printer.

parameter

Optional information supplied with a command to specify how the
command is to operate. TRSDOS parameters are placed inside
parentheses.

password

An optional field in a filespec consisting of
up to 8 ,· alphanumeric characters. If a file

is created without a password, 8 blanks become the default
password. To access a file, you must specify the password in the
filespec.

Using the TRSDOS ATTRIB command, you can assign both update
and access passwords; the access password will grant only a
limited degree of access, while the update password grants total
access to the file. See filespec.

258

APPENDIX C

•

•

•

•

•

APPENDIX C

prompt

A character or message provided by the Computer to indicate that
it's ready to accept keyboard input.

protected file
A disk file which has a non-blank password, and therefore can only
be accessed by reference to that password.

protection level

The degree of access granted by using the access password: kill,
rename, write, read, or execute.

random access memory or RAM

Semiconductor memory which can be addressed directly and either
read from or written to. See "Memory Requirements" o

routine
A sequence of instructions to carry out a certain function; typically,
a routine may be called from multiple points in a program. For
example: keyboard scan routine .

259

sector

One-tenth of a track on a diskette, containing 256 bytes of storage;
a TRSDOS "physical record".

sequential access

Reading from a disk file or writing to it "from start to finish",
without being able to directly access a particular record in the file.

statement

A complete instruction in BASIC.

string

Any sequence of characters which must be examined verbatim for
meaning: in other words, the string does not correspond to a
quantity. For example, the number 1234 represents the same
quantity as 1000+234, but the string "1234" does not. (String
addition is actually concatenation, or stringing-together, so that:
"1234" equals "I" + "2'' + "3" + "4").

syntax

The "grammatical" requirements for a command or statement.
Syntax generally refers to punctuation and ordering of elements
within a statement. See "Notation Conventions", General
Information, for a description of syntax abbreviations used in
this manual.

transfer address

Se.e entry point.

TRSDOS

TRS-80 Disk-Operating System, pronounced "triss-doss".
TRSDOS is supplied on disk and is then loaded into RAM.

260

APPENDIX C

-~

•

•

•

•

•

APPENDIX C

user RAM or user memory

See direct access memory.

utility
A program or routine which serves a limited, specific purpose.
There are two extended TRSDOS utilities, FORMAT and BACKUP,
and two non-TRSDOS utilities, DISKDUMP/BAS and TAPEDISK.

write-protect

To physically protect a disk from being written to by leaving the
write-protect notch uncovered •

261

-

•

MODEL.. II BASIC II\IDEX

INDEX
=-----------------------~~======================
SPEC I.I\L.. SYMBOLS
+ (a.ddition)

(:::.ubtr·actii:1n)

* I
:carat"
b~:t.i::k:::. l a:::.h
•· (unary Positive)

(unar-Y n{?9a ti ve)

<==
):::::

<>

About This Reference Manual
ABS •••.•
Addj.tion
AND
Ar-r·a·-r· Var·ie.b1 es.
ABC
ATN
AUTO

Bit ManiPulation
Boolean O~er-ator-s

CDBL.
CHI,$
CINT
CLEAi,
CLOSE
CLS
Comma.rid Mode
Command Statements
Computational Functions
CONT
cos
Ccll\lG
CVD
CVI
CVB

.39
• ;;ir;>
. ,,0
" i+i2)

• 41
• la-0
• 39
.:39
.44
.. L1,i1-

• ,,4 . _,,.,,
.44
. 4'•

2
162
• :35
"L11

. 25
16:3
164
.. 60

4--:-..
. ,,.1

165
1f3lt
166
• [311)

13B
126
. 10

.. 50, ~j(:,

159
14B
167
16B
206

.. :206

.206

PAGE 1

MODEL. II BASIC

Data
DATA
D~:t+.:a
Data
DATE$

Ci:ins-+.:an+.:s.
Conver·~-ion

Debu9
DEFDBL.
DEF FN

!3~:a.tements

INDEX

Definition and Initialization Statements ..
DEFINT
DEFSNC-i
DEFSTR
DEFUSR
DELETE
DIM
Direct Access Techniques
Dis-k ••••••••
Di. s.k Sta t<:m<:nt:s.
Divis-ii::ir1
Double-Precision TvPe
Double- to Sin9le-Precision

EDIT
Edi.t
Edit

!"lode
M,:ide
A

Subcommands

END
EOF
E(N
ERASE
ERi...
ERR
ERROR

C
D
E
H
I
f\
L
0
s
X

Er-r·i:1r· M-E-s-'.E-a9e::.
Evaluation 01=
E::-::e cu +.:e Mo de
EXP
E>::Ponentiation
1::::-::'f=-r·e s- s ions--

E)<Pr·es.sion:.::.

., 2L1-

• 8:I.
. 21
•. .:'. I
185
1 ff 7
. 83
• 8'+
..79
.86
.87
.BB
• E<9
.6:l
.90

.. 229
~205

:lT7
.36
" 21
• 2fJ

b•'~}

• 12
.238
.241
• 2,,.3
.242
• 2f, 1
.242
.241
.24.LJ,
• 21+0
• 242
• 21+3
.240

106
207
• ff 1
.92
149
151
1. s:;;:
249
.46
. 11
169
• 37
.. ;32

FIELD•••......•..•••......•...••.•••••. l.39

PAGE --~,
..:.

•

•

•

MODEL II BASIC

FIX
For More Information
FOR ... NEXT
FRE
Function::.

Gener·a 1 Infi:1r·mation
GET
Gl ossar··y·
GOSUB
GOTO
Gr·aPh i c:::. Mode

He>::adec ima l
HEX$•.

IF ... THEN

and Octal

Il le9al Conver~.ii:•ns
Immediate Line
IMP
INf,EY$
INPUT
INPUT$
INPUT$ (dis.k)
INPUT#

Constants

InPut/OutPut
InPut/Oui:Put
INSTR

Functions
Statements.

INT
Integer Division

INDEX

Inte9er to Sin9le- or Double-Precision
I nte9e r· TY Pe
Interpretation of an InPut Line

Keyboar·d
Kevboar·d
~(eyboar·d
KILL

Character InPut

LEFT$
Le9al
L..EN
LET
LINE
LINE
Li r1~=.r
LIST
U.IST
LOAD

InPut/Output Functions
Line Ir,Pui:

Conver-sions

INPUT
INPUT#
Printer Statements

1 711)
•• 7
111)7

.214
48, 157

.. 1
1411)

• 251
108
109
. 16

.. 23
186

110
.27
. 11
.41
1 ','8
120
199

.208
141
195
117
171
17:3
• 36
.28
.20
.10

• 14
1 'i>7
• 13
.63

187
.27
174
.98
122
142
135
.64
.65
.66

PAGE 3

MODEL II BASIC

Loading BASIC
LOC
LOF
LOG
Lo9ical •Per.a.tors
L.PRINT
LEET

MEM
Memory
MERGE
MID$
Ml<:D$
Ml\!$
MI\S$
MOD
Modes of Operation
Modulus Arithmetic

NEW
NOT
Notation
Numer· i c
Nu mer· i c
Numer·ic

ComPi..1 tat i c, r,a 1
Da 1:a •••••
0Per·ator·s

OCT$ •.•••••..
ON ERROR GOTO
ON ••• GOSUB
ON ••• GOTO
OPEN •••••
0Per·atic•r1s-.
0Per·.a.tor·s

Functions-

0Ptions
OR

for Loadin9 BASIC

Order of Operations

Parenthe:::.e:-::-.
POS
PRINT
PRINT#
Pr·o9r·am
Pr·o9r-am Line
Pro9ram Sequenc~ Statements
Pro9ram Statements
PUT

INDEX

1 IZIIZI,

-, . '
• ::;;09
. 21IZI

175
. 4-IZI
136
.99

.215
.. 6
a 67
18f3
:211

. 211
• 211
.37
• 1 fZ)

.Tl

.36

.69

.41
n " ,(},

16J.
• 2~)
.35

189
153
11:2
113
143
.31
"3'+
•• 8
• 41
"L~b

• • I+6
.. 202

1 :27
11,4
. 19
• 11.
105

.50, Tl
146

RANDOM •..••....••••.....••••..•....•.•••• , •.• 93

PAGE 4

•

•

•

•

•

•

MODEL II BASIC

READ
Relational 0Perators
REM
RENUM
Rest=:r·ved Wor-ds
l'<ESTOHE
RESUME
HETURN
HIGHT$
HND
ROW
HSET
Rules
RUN

SAVE

fc,r· Conver-sic,n

Scr·o 1 Mode
Sequential Access Techniques
SGN •••..••••••••.••.•
SIN •••••.•.••.••.•...
Sin9le-Precision TvPe
Sin9le- or Double-Precision
Sin9le- to Double-Precision
SPACE$
SPC
Special
SPE!C i.a. l
Special

Functions
~'\e·-..-s in the
t\eY:E, in the

SG!R
Statement'.:­
STOP •••.••
Str·ir,9
STH$
STHING$
Str·in9
Str·ir,9

Data

Functions
0Per·ator·s

Subi::r•.:action
SWAP
SYSTEM

TAB
TAN
TIME$
TROFF
TRON

Cc1mm,:3.nd
E::--.:ecute

TYPe
T··tPe
T·y·pe

Cc1nver·'.:-ion:2.
Decl.a.r·ation
Deel ar·ation

Char-ac te r ::.
Ta9s.

TvPin9 of Constants
TYPes of Variables

Mode
Mc,de

INDEX

101
• 4,0
.94
.70

• 24, 24,7
.95
l 5,:,
115
190
176

.203
.99
.. 28
.72

•. 74
•• 15
.. ~-;-~23

177
178
.. 20
.. 28
.. 29
191

.204

.213
• 11

1"'
179

19, 31
155
.21
192
193
183
• 4,4

"3~)
111)3
.75

l.29
1811)
194
156
156
.48
.. 22
.. 25
..22

PAGE 5

MODEL II BASIC INDEX

U:;.in9 t.h<'? l"\<'?Yt«:,ar·d ••••••••••••••••••••••••••• J.3
Usin9 the Line Edit.o~ ••••...•••••••••••••••• 232
Usin9 the Video DisPlaY ••.•••..•••••••••••••• 15
USRn •• :"219

VAL ••••••••••••.•••••••••••••••••••••••••••• 181
Var·iable Narr1es 24
Var·iables .•••••••••••••••••••••••••••••••••••• 24
VARPTR •••••••••••••••••••••••••••••••••••••• 216
VARPTR(it l •••••••••••••••••••••••••••••••••• 216
Video DisPlav InPut/OutPut Functions 201
Video DisPlaY Out.Put •••••••••.•••••••••••••• 125

XOR •••••••••••.••••••.••••••••••••••••••••••• 41

PAGE 6 •

•

•

•••• • -

IMPORTANT NOTICE

ALL RADIO SHACK COMPUTER PROGRAMS ARE DISTRIBUTED ON AN
"AS IS" BASIS WITHOUT WARRANTY

Radio Shack shall have no liability or responsibility to customer or any other
person or entity with respect to any liability, loss or damage caused or alleged to
be caused directly or indirectly by computer equipment or programs sold by ·
Radio Shack, including but not limited to any interruption of service, loss of
business or anticipatory profits or consequential damages resultin'g from the use ·
or op_eration of such computer or computer programs,
NOTE: Good data processing procedure dictates that the user test the program,

run and test sample sets of data, and run the system in parallel with the
system previously in use for a period of time adequate to insure that
results of operation of the computer or program are satisfactory.

LIMITED WAR.RANTY
For a period of 90 days from the date of delivery, Radio Shack war­
rants to the original purchaser that the. computer hardware described
herein shall be free from defects in material and workmanship un_der.
normal use and service. This warranty is only applicable to purchases
from Radio Shack company-owned retail outlets and through duly
authorized franchisees and dealers. The warranty shall be void if this
unit's case or cabinet is opened or if the unit is altered or modified.
During this period, if a defect should occur, the product must be re­
turned to a Radio Shack store or dealer for repair, and proof of pur­
chase must be presented. Purchaser's sole and exclusive remedy in the
event of defect is expressly limited to the correction of the defect by
adjustment, repair or replacement at Radio Shack's election and sole
expense, except there shall be no obligation to replace or repair items
which by their nature are expendable. No representation or other affir­
mation of fact, including, but not limited to, statements regarding
capacity, suitability for use, or performance of the equipment, shall
be or be deemed to be a warranty or representation by Radio Shack,
for any purpose, nor give rise to any liability or obligation of Radio
Shack whatsoever.

EXCEPT AS SPECIFICALLY PROVIDED IN THIS AGREEMENT,
THERE ARE NO OTHER WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRAN­
TIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE AND IN NO EVENT SHALL RADIO SHACK BE LIABLE
FOR LOSS OF PROFITS OR BENEFITS, INDIRECT, SPECIAL,
CONSEQUENTIAL OR OTHER SIMILAR DAMAGES ARISING OUT
OF ANY BREACH OF THIS WARRANTY OR OTHERWISE.

RADIO SHACK ~ A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 7.6102
CANADA: BARRIE, ONTARIO L4M 4W5

AUSTRALIA

280-316 VICTORIA ROAD
RYDALMERE, N.S.W. 2116

PRINTED IN U.S.A.
8749124
8749122
8749123

TANDY CORPORATION

BELGIUM

PARC INOUSTRIEL DE NANINN.E
5140 NANINNE

U. K.

BILSTON ROAD WEDNESBURY
WEST MIDLANDS WS10 7JN

	Cover
	Inside Cover
	Contents
	Letter from Tandy
	Corrections to Manual 08/23/1979
	Operations Manual
	DOS Reference Manual
	General Information
	Library Commands
	Utility Programs
	Technical Information
	Index

	BASIC Reference Maual
	Using Model II BASIC
	BASIC Concepts
	BASIC Keywords
	File Access Techniques
	Using the Line Editor

	Appendix
	A - Reserved Words
	B - BASIC Error Messages
	C - Glossary

	Index
	Rear Cover

